歡迎光臨管理范文網(wǎng)
當(dāng)前位置:工作總結(jié) > 總結(jié)大全 > 小學(xué)總結(jié)

小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié) 十五篇

發(fā)布時(shí)間:2023-12-26 18:15:01 查看人數(shù):83

小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié)

第1篇 小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié) 2900字

一、 計(jì)算

1. 四則混合運(yùn)算繁分?jǐn)?shù)

⑴ 運(yùn)算順序

⑵ 分?jǐn)?shù)、小數(shù)混合運(yùn)算技巧

一般而言:

① 加減運(yùn)算中,能化成有限小數(shù)的統(tǒng)一以小數(shù)形式;

② 乘除運(yùn)算中,統(tǒng)一以分?jǐn)?shù)形式。

⑶帶分?jǐn)?shù)與假分?jǐn)?shù)的互化

⑷繁分?jǐn)?shù)的化簡(jiǎn)

2. 簡(jiǎn)便計(jì)算

⑴湊整思想

⑵基準(zhǔn)數(shù)思想

⑶裂項(xiàng)與拆分

⑷提取公因數(shù)

⑸商不變性質(zhì)

⑹改變運(yùn)算順序

① 運(yùn)算定律的綜合運(yùn)用

② 連減的性質(zhì)

③ 連除的性質(zhì)

④ 同級(jí)運(yùn)算移項(xiàng)的性質(zhì)

⑤ 增減括號(hào)的性質(zhì)

⑥ 變式提取公因數(shù)

形如:

3. 估算

求某式的整數(shù)部分:擴(kuò)縮法

4. 比較大小

① 通分

a. 通分母

b. 通分子

② 跟'中介'比

③ 利用倒數(shù)性質(zhì)

若 1/c<1/b<1/c,則c>b>a.。

5. 定義新運(yùn)算

6. 特殊數(shù)列求和

運(yùn)用相關(guān)公式

二、 數(shù)論

1. 奇偶性問(wèn)題

奇+奇=偶 奇×奇=奇

奇+偶=奇 奇×偶=偶

偶+偶=偶 偶×偶=偶

2. 位值原則

形如:abc =100a+10b+c

3. 數(shù)的整除特征:

整除數(shù)特征

2 末尾是0、2、4、6、8

3 各數(shù)位上數(shù)字的和是3的倍數(shù)

5 末尾是0或5

9 各數(shù)位上數(shù)字的和是9的倍數(shù)

11 奇數(shù)位上數(shù)字的和與偶數(shù)位上數(shù)字的和,兩者之差是11的倍數(shù)

4和25 末兩位數(shù)是4(或25)的倍數(shù)

8和125 末三位數(shù)是8(或125)的倍數(shù)

7、11、13 末三位數(shù)與前幾位數(shù)的差是7(或11或13)的倍數(shù)

4. 整除性質(zhì)

① 如果c|a、c|b,那么c|(a b)。

② 如果bc|a,那么b|a,c|a。

③ 如果b|a,c|a,且(b,c)=1,那么bc|a。

④ 如果c|b,b|a,那么c|a.

⑤ a個(gè)連續(xù)自然數(shù)中必恰有一個(gè)數(shù)能被a整除。

5. 帶余除法

一般地,如果a是整數(shù),b是整數(shù)(b≠0),那么一定有另外兩個(gè)整數(shù)q和r,0≤r<b,使得a=b×q+r

當(dāng)r=0時(shí),我們稱(chēng)a能被b整除。

當(dāng)r≠0時(shí),我們稱(chēng)a不能被b整除,r為a除以b的余數(shù),q為a除以b的不完全商(亦簡(jiǎn)稱(chēng)為商)。用帶余數(shù)除式又可以表示為a÷b=q……r, 0≤r<b a=b×q+r

6. 分解定理

任何一個(gè)大于1的自然數(shù)n都可以寫(xiě)成質(zhì)數(shù)的連乘積,即

n= p1 × p2 ×...×pk

7. 約數(shù)個(gè)數(shù)與約數(shù)和定理

設(shè)自然數(shù)n的質(zhì)因子分解式如n= p1 × p2 ×...×pk 那么:

n的約數(shù)個(gè)數(shù):d(n)=(a1+1)(a2+1)....(ak+1)

n的所有約數(shù)和:(1+p1+p1 +…p1 )(1+p2+p2 +…p2 )…(1+pk+pk +…pk )

8. 同余定理

① 同余定義:若兩個(gè)整數(shù)a,b被自然數(shù)m除有相同的余數(shù),那么稱(chēng)a,b對(duì)于模m同余,用式子表示為a≡b(mod m)

②若兩個(gè)數(shù)a,b除以同一個(gè)數(shù)c得到的余數(shù)相同,則a,b的差一定能被c整除。

③兩數(shù)的和除以m的余數(shù)等于這兩個(gè)數(shù)分別除以m的余數(shù)和。

④兩數(shù)的差除以m的余數(shù)等于這兩個(gè)數(shù)分別除以m的余數(shù)差。

⑤兩數(shù)的積除以m的余數(shù)等于這兩個(gè)數(shù)分別除以m的余數(shù)積。

9.完全平方數(shù)性質(zhì)

①平方差: a -b =(a+b)(a-b),其中我們還得注意a+b, a-b同奇偶性。

②約數(shù):約數(shù)個(gè)數(shù)為奇數(shù)個(gè)的是完全平方數(shù)。

約數(shù)個(gè)數(shù)為3的是質(zhì)數(shù)的平方。

③質(zhì)因數(shù)分解:把數(shù)字分解,使他滿(mǎn)足積是平方數(shù)。

④平方和。

10.孫子定理(中國(guó)剩余定理)

11.輾轉(zhuǎn)相除法

12.?dāng)?shù)論解題的常用方法:

枚舉、歸納、反證、構(gòu)造、配對(duì)、估計(jì)

三、 幾何圖形

1. 平面圖形

⑴多邊形的內(nèi)角和

n邊形的內(nèi)角和=(n-2)×180°

⑵等積變形(位移、割補(bǔ))

① 三角形內(nèi)等底等高的三角形

② 平行線(xiàn)內(nèi)等底等高的三角形

③ 公共部分的傳遞性

④ 極值原理(變與不變)

⑶三角形面積與底的正比關(guān)系

s1∶s2 =a∶b ;

s1∶s2=s4∶s3 或者s1×s3=s2×s4

⑹差不變?cè)?/p>

知5-2=3,則圓點(diǎn)比方點(diǎn)多3。

⑺隱含條件的等價(jià)代換

例如弦圖中長(zhǎng)短邊長(zhǎng)的關(guān)系。

⑻組合圖形的思考方法

① 化整為零

② 先補(bǔ)后去

③ 正反結(jié)合

2. 立體圖形

⑴規(guī)則立體圖形的表面積和體積公式

⑵不規(guī)則立體圖形的表面積

整體觀照法

⑶體積的等積變形

①水中浸放物體:v升水=v物

②測(cè)啤酒瓶容積:v=v空氣+v水

⑷三視圖與展開(kāi)圖

最短線(xiàn)路與展開(kāi)圖形狀問(wèn)題

⑸染色問(wèn)題

幾面染色的塊數(shù)與'芯'、棱長(zhǎng)、頂點(diǎn)、面數(shù)的關(guān)系。

四、 典型應(yīng)用題

1. 植樹(shù)問(wèn)題

①開(kāi)放型與封閉型

②間隔與株數(shù)的關(guān)系

2. 方陣問(wèn)題

外層邊長(zhǎng)數(shù)-2=內(nèi)層邊長(zhǎng)數(shù)

(外層邊長(zhǎng)數(shù)-1)×4=外周長(zhǎng)數(shù)

外層邊長(zhǎng)數(shù)2-中空邊長(zhǎng)數(shù)2=實(shí)面積數(shù)

3. 列車(chē)過(guò)橋問(wèn)題

①車(chē)長(zhǎng)+橋長(zhǎng)=速度×?xí)r間

②車(chē)長(zhǎng)甲+車(chē)長(zhǎng)乙=速度和×相遇時(shí)間

③車(chē)長(zhǎng)甲+車(chē)長(zhǎng)乙=速度差×追及時(shí)間

列車(chē)與人或騎車(chē)人或另一列車(chē)上的司機(jī)的相遇及追及問(wèn)題

車(chē)長(zhǎng)=速度和×相遇時(shí)間

車(chē)長(zhǎng)=速度差×追及時(shí)間

4. 年齡問(wèn)題

差不變?cè)?/p>

5. 雞兔同籠

假設(shè)法的解題思想

6. 牛吃草問(wèn)題

原有草量=(牛吃速度-草長(zhǎng)速度)×?xí)r間

7. 平均數(shù)問(wèn)題

8. 盈虧問(wèn)題

分析差量關(guān)系

9. 和差問(wèn)題

10. 和倍問(wèn)題

11. 差倍問(wèn)題

12. 逆推問(wèn)題

還原法,從結(jié)果入手

13. 代換問(wèn)題

列表消元法

等價(jià)條件代換

五、 行程問(wèn)題

1. 相遇問(wèn)題

路程和=速度和×相遇時(shí)間

2. 追及問(wèn)題

路程差=速度差×追及時(shí)間

3. 流水行船

順?biāo)俣?船速+水速

逆水速度=船速-水速

船速=(順?biāo)俣?逆水速度)÷2

水速=(順?biāo)俣?逆水速度)÷2

4. 多次相遇

線(xiàn)型路程: 甲乙共行全程數(shù)=相遇次數(shù)×2-1

環(huán)型路程: 甲乙共行全程數(shù)=相遇次數(shù)

其中甲共行路程=單在單個(gè)全程所行路程×共行全程數(shù)

5. 環(huán)形跑道

6. 行程問(wèn)題中正反比例關(guān)系的應(yīng)用

路程一定,速度和時(shí)間成反比。

速度一定,路程和時(shí)間成正比。

時(shí)間一定,路程和速度成正比。

7. 鐘面上的追及問(wèn)題。

① 時(shí)針和分針成直線(xiàn);

② 時(shí)針和分針成直角。

8. 結(jié)合分?jǐn)?shù)、工程、和差問(wèn)題的一些類(lèi)型。

9. 行程問(wèn)題時(shí)常運(yùn)用'時(shí)光倒流'和'假定看成'的思考方法。

六、 計(jì)數(shù)問(wèn)題

1. 加法原理:分類(lèi)枚舉

2. 乘法原理:排列組合

3. 容斥原理:

① 總數(shù)量=a+b+c-(ab+ac+bc)+abc

② 常用:總數(shù)量=a+b-ab

4. 抽屜原理:

至多至少問(wèn)題

5. 握手問(wèn)題

在圖形計(jì)數(shù)中應(yīng)用廣泛

① 角、線(xiàn)段、三角形,

② 長(zhǎng)方形、梯形、平行四邊形

③ 正方形

七、 分?jǐn)?shù)問(wèn)題

1. 量率對(duì)應(yīng)

2. 以不變量為'1'

3. 利潤(rùn)問(wèn)題

4. 濃度問(wèn)題

倒三角原理

例:

5. 工程問(wèn)題

① 合作問(wèn)題

② 水池進(jìn)出水問(wèn)題

6. 按比例分配

八、 方程解題

1. 等量關(guān)系

① 相關(guān)聯(lián)量的表示法

例: 甲 + 乙 =100 甲÷乙=3

_ 100-_ 3_ _

②解方程技巧

恒等變形

2. 二元一次方程組的求解

代入法、消元法

3. 不定方程的分析求解

以系數(shù)大者為試值角度

4. 不等方程的分析求解

九、 找規(guī)律

⑴周期性問(wèn)題

① 年月日、星期幾問(wèn)題

② 余數(shù)的應(yīng)用

⑵數(shù)列問(wèn)題

① 等差數(shù)列

通項(xiàng)公式 an=a1+(n-1)d

求項(xiàng)數(shù): n=

求和: s=

② 等比數(shù)列

求和: s=

③ 裴波那契數(shù)列

⑶策略問(wèn)題

① 搶報(bào)30

② 放硬幣

⑷最值問(wèn)題

① 最短線(xiàn)路

a.一個(gè)字符陣組的分線(xiàn)讀法

b.在格子路線(xiàn)上的最短走法數(shù)

② 化問(wèn)題

a.統(tǒng)籌方法

b.烙餅問(wèn)題

十、 算式謎

1. 填充型

2. 替代型

3. 填運(yùn)算符號(hào)

4. 橫式變豎式

5. 結(jié)合數(shù)論知識(shí)點(diǎn)

十一、 數(shù)陣問(wèn)題

1. 相等和值問(wèn)題

2. 數(shù)列分組

⑴知行列數(shù),求某數(shù)

⑵知某數(shù),求行列數(shù)

3. 幻方

⑴奇階幻方問(wèn)題:

楊輝法 羅伯法

⑵偶階幻方問(wèn)題:

雙偶階:對(duì)稱(chēng)交換法

單偶階:同心方陣法

十二、 二進(jìn)制

1. 二進(jìn)制計(jì)數(shù)法

① 二進(jìn)制位值原則

② 二進(jìn)制數(shù)與十進(jìn)制數(shù)的互相轉(zhuǎn)化

③ 二進(jìn)制的運(yùn)算

2. 其它進(jìn)制(十六進(jìn)制)

十三、 一筆畫(huà)

1. 一筆畫(huà)定理:

⑴一筆畫(huà)圖形中只能有0個(gè)或兩個(gè)奇點(diǎn);

⑵兩個(gè)奇點(diǎn)進(jìn)必須從一個(gè)奇點(diǎn)進(jìn),另一個(gè)奇點(diǎn)出;

2. 哈密爾頓圈與哈密爾頓鏈

3. 多筆畫(huà)定理

筆畫(huà)數(shù)=

十四、 邏輯推理

1. 等價(jià)條件的轉(zhuǎn)換

2. 列表法

3. 對(duì)陣圖

競(jìng)賽問(wèn)題,涉及體育比賽常識(shí)

十五、 火柴棒問(wèn)題

1. 移動(dòng)火柴棒改變圖形個(gè)數(shù)

2. 移動(dòng)火柴棒改變算式,使之成立

十六、 智力問(wèn)題

1. 突破思維定勢(shì)

2. 某些特殊情境問(wèn)題

十七、 解題方法

(結(jié)合雜題的處理) 9. 畫(huà)圖法

1. 代換法 10. 列表法

2. 消元法 11. 排除法

3. 倒推法 12. 染色法

4. 假設(shè)法 13. 構(gòu)造法

5. 反證法 14. 配對(duì)法

6. 極值法 15. 列方程

7. 設(shè)數(shù)法 ⑴方程

8. 整體法 ⑵不定方程

⑶不等方程

第2篇 小學(xué)奧數(shù)數(shù)論質(zhì)數(shù)與合數(shù)問(wèn)題考點(diǎn)總結(jié) 450字

小學(xué)奧數(shù)數(shù)論質(zhì)數(shù)與合數(shù)問(wèn)題考點(diǎn)解析:

某個(gè)質(zhì)數(shù)與6、8、12、14之和都仍然是質(zhì)數(shù),一共有1個(gè)滿(mǎn)足上述條件的質(zhì)數(shù).

考點(diǎn):質(zhì)數(shù)與合數(shù)問(wèn)題.

分析:個(gè)位數(shù)的質(zhì)數(shù)是2、3、5、7、9,大于10的質(zhì)數(shù)的個(gè)位數(shù)一個(gè)不是0、2或5,是1、3、7或9;由于6、8、12、14是偶數(shù),則這個(gè)質(zhì)數(shù)的個(gè)位數(shù)一定為奇數(shù),即為1,3,5,7,9.然后將它們分別與6、8、12、14相加進(jìn)行驗(yàn)證排除即可.

解答:解:6,8,12,14都是偶數(shù),加上的偶數(shù)質(zhì)數(shù)2和仍然是偶數(shù),所以不是2.

14加上任何尾數(shù)是1的質(zhì)數(shù),最后的尾數(shù)都是5,一定能被5整除.

12加上任何尾數(shù)是3的質(zhì)數(shù),尾數(shù)也是5;

8加上任何尾數(shù)是7的質(zhì)數(shù),尾數(shù)也是5;

6加上任何尾數(shù)是9的質(zhì)數(shù),尾數(shù)也是5.

所以,這個(gè)質(zhì)數(shù)的末位一定不是1,3,7,9.

5加上6、8、12、14中任意一個(gè)數(shù)的末位數(shù)都不是5,而末位數(shù)是5的質(zhì)數(shù)中,只有5是質(zhì)數(shù),

因此,只有5能滿(mǎn)足條件,即一共有1個(gè)滿(mǎn)足上述條件的質(zhì)數(shù).

故答案為:1.點(diǎn)評(píng):明確除2和5以外質(zhì)數(shù)的個(gè)位都是1,3,7,9,大于10的個(gè)位數(shù)是5數(shù)一定不是質(zhì)數(shù)這兩個(gè)規(guī)律是完成本題的關(guān)鍵.

第3篇 小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié):約數(shù)與倍數(shù) 550字

約數(shù)與倍數(shù)

約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。

公約數(shù):幾個(gè)數(shù)公有的約數(shù),叫做這幾個(gè)數(shù)的公約數(shù);其中的一個(gè),叫做這幾個(gè)數(shù)的公約數(shù)。

公約數(shù)的性質(zhì):

1、幾個(gè)數(shù)都除以它們的公約數(shù),所得的幾個(gè)商是互質(zhì)數(shù)。

2、幾個(gè)數(shù)的公約數(shù)都是這幾個(gè)數(shù)的約數(shù)。

3、幾個(gè)數(shù)的公約數(shù),都是這幾個(gè)數(shù)的公約數(shù)的約數(shù)。

4、幾個(gè)數(shù)都乘以一個(gè)自然數(shù)m,所得的積的公約數(shù)等于這幾個(gè)數(shù)的公約數(shù)乘以m。

例如:12的約數(shù)有1、2、3、4、6、12;

18的約數(shù)有:1、2、3、6、9、18;

那么12和18的公約數(shù)有:1、2、3、6;

那么12和18的公約數(shù)是:6,記作(12,18)=6;

求公約數(shù)基本方法:

1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來(lái)。

2、短除法:先找公有的約數(shù),然后相乘。

3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個(gè)余數(shù),就是所求的公約數(shù)。

公倍數(shù):幾個(gè)數(shù)公有的倍數(shù),叫做這幾個(gè)數(shù)的公倍數(shù);其中最小的一個(gè),叫做這幾個(gè)數(shù)的最小公倍數(shù)。

12的倍數(shù)有:12、24、36、48……;

18的倍數(shù)有:18、36、54、72……;

那么12和18的公倍數(shù)有:36、72、108……;

那么12和18最小的公倍數(shù)是36,記作[12,18]=36;

最小公倍數(shù)的性質(zhì):

1、兩個(gè)數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。

2、兩個(gè)數(shù)公約數(shù)與最小公倍數(shù)的乘積等于這兩個(gè)數(shù)的乘積。

求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法

第4篇 小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié):綜合行程 350字

綜合行程

基本概念:行程問(wèn)題是研究物體運(yùn)動(dòng)的,它研究的是物體速度、時(shí)間、路程三者之間的關(guān)系.

基本公式:路程=速度×?xí)r間;路程÷時(shí)間=速度;路程÷速度=時(shí)間

關(guān)鍵問(wèn)題:確定運(yùn)動(dòng)過(guò)程中的位置和方向。

相遇問(wèn)題:速度和×相遇時(shí)間=相遇路程(請(qǐng)寫(xiě)出其他公式)

追及問(wèn)題:追及時(shí)間=路程差÷速度差(寫(xiě)出其他公式)

流水問(wèn)題:順?biāo)谐?(船速+水速)×順?biāo)畷r(shí)間

逆水行程=(船速-水速)×逆水時(shí)間

順?biāo)俣?船速+水速

逆水速度=船速-水速

靜水速度=(順?biāo)俣?逆水速度)÷2

水 速=(順?biāo)俣?逆水速度)÷2

流水問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的速度,參照以上公式。

過(guò)橋問(wèn)題:關(guān)鍵是確定物體所運(yùn)動(dòng)的路程,參照以上公式。

主要方法:畫(huà)線(xiàn)段圖法

基本題型:已知路程(相遇路程、追及路程)、時(shí)間(相遇時(shí)間、追及時(shí)間)、速度(速度和、速度差)中任意兩個(gè)量,求第三個(gè)量。

第5篇 小學(xué)奧數(shù)思維訓(xùn)練類(lèi)型總結(jié) 800字

轉(zhuǎn)化型

這是解決問(wèn)題遇到障礙受阻時(shí)把問(wèn)題由一種形式轉(zhuǎn)換成另一種形式,使問(wèn)題變得更簡(jiǎn)單、更清楚,以利解決的思維形式。在教學(xué)中,通過(guò)該項(xiàng)訓(xùn)練,可以大幅度地提高學(xué)生解題能力。如:某一賣(mài)魚(yú)者規(guī)定,凡買(mǎi)魚(yú)的人必須買(mǎi)筐中魚(yú)的一半再加半條。照這樣賣(mài)法,4人買(mǎi)了后,筐中魚(yú)盡,問(wèn)筐中原有魚(yú)多少條?該題對(duì)一些沒(méi)有受過(guò)轉(zhuǎn)化思維訓(xùn)練的學(xué)生來(lái)說(shuō),會(huì)感到一籌莫展。即使基礎(chǔ)較好的學(xué)生也只能復(fù)雜的方程。

但經(jīng)過(guò)轉(zhuǎn)化思維訓(xùn)練后,學(xué)生就變得聰明起來(lái)了,他們知道把買(mǎi)魚(yú)人轉(zhuǎn)換成1人,顯然魚(yú)1條;然后轉(zhuǎn)換成2人,則魚(yú)有3條;再3人,則7條;再4人,則15條。

系統(tǒng)型

這是把事物或問(wèn)題作為一個(gè)系統(tǒng)從不同的層次或不同的角度去考慮的高級(jí)整體思維形式。在高年級(jí)除結(jié)合綜合應(yīng)用題以外還可編制許多智力訓(xùn)練題來(lái)培養(yǎng)學(xué)生系統(tǒng)思維能力。如:123456789在不改變順序前提下(即可以將幾個(gè)相鄰的數(shù)合在一起成為一個(gè)數(shù),但不可以顛倒),在它們之間劃加減號(hào),使運(yùn)算結(jié)果等于1oo。象這道題就牽涉到系統(tǒng)思維的訓(xùn)練。教師可引導(dǎo)學(xué)生把10個(gè)數(shù)看成一個(gè)系統(tǒng),從不同的層次去考慮、第一層次:找100的最接近數(shù),即89比100僅少11。第二個(gè)層次:找11的最接近數(shù),很明顯是前面的12。第三個(gè)層次:解決多l(xiāng)的問(wèn)題。整個(gè)程序如下:12+3+4+5-6-7+89=100

激化型

這是一種跳躍性、活潑性、轉(zhuǎn)移性很強(qiáng)的思維形式。教師可通過(guò)速問(wèn)速答來(lái)訓(xùn)練練學(xué)生。如問(wèn):3個(gè)5相加是多少?學(xué)生答:5+5+5=15或5×3=15。教師又問(wèn):3個(gè)5相乘是多少?學(xué)生答:5×5×5=125。緊接著問(wèn):3與5相乘是多少?學(xué)上答:3×5=15,或5×3=15。通過(guò)這樣的速問(wèn)速答的訓(xùn)練,發(fā)現(xiàn)學(xué)生思維越來(lái)越活躍,越來(lái)越靈活,越來(lái)越準(zhǔn)確。

類(lèi)比型

這是一種對(duì)并列事物相似性的個(gè)同實(shí)質(zhì)進(jìn)行識(shí)別的思維形式。這項(xiàng)訓(xùn)練可以培養(yǎng)學(xué)生思維的準(zhǔn)確性。如:

①金湖糧店運(yùn)來(lái)大米6噸。比運(yùn)來(lái)的面粉少1/4噸、運(yùn)來(lái)面粉多少?lài)崳?/p>

②金湖糧店運(yùn)來(lái)大米6噸,比運(yùn)來(lái)的面粉少1/4,運(yùn)來(lái)面粉多少?lài)崳?/p>

第6篇 小學(xué)數(shù)學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié):數(shù)列求和 400字

數(shù)列求和

等差數(shù)列:在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。

基本概念:

首項(xiàng):等差數(shù)列的第一個(gè)數(shù),一般用a1表示;

項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;

公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;

通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;

數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用sn表示.

基本思路:等差數(shù)列中涉及五個(gè)量:a1,an, d, n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。

基本公式:通項(xiàng)公式:an=a1+(n-1)d;

通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1)×公差;

數(shù)列和公式:sn,= (a1+an)×n÷2;

數(shù)列和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2;

項(xiàng)數(shù)公式:n= (an+a1)÷d+1;

項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1;

公差公式:d =(an-a1))÷(n-1);

公差=(末項(xiàng)-首項(xiàng))÷(項(xiàng)數(shù)-1);

第7篇 小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié):余數(shù)、同余與周期 400字

余數(shù)、同余與周期

一、同余的定義:

①若兩個(gè)整數(shù)a、b除以m的余數(shù)相同,則稱(chēng)a、b對(duì)于模m同余。

②已知三個(gè)整數(shù)a、b、m,如果m|a-b,就稱(chēng)a、b對(duì)于模m同余,記作a≡b(modm),讀作a同余于b模m。

二、同余的性質(zhì):

①自身性:a≡a(modm);

②對(duì)稱(chēng)性:若a≡b(modm),則b≡a(modm);

③傳遞性:若a≡b(modm),b≡c(modm),則a≡c(modm);

④和差性:若a≡b(modm),c≡d(modm),則a+c≡b+d(modm),a-c≡b-d(modm);

⑤相乘性:若a≡b(modm),c≡d(modm),則a×c≡b×d(modm);

⑥乘方性:若a≡b(modm),則an≡bn(modm);

⑦同倍性:若a≡b(modm),整數(shù)c,則a×c≡b×c(modm×c);

三、關(guān)于乘方的預(yù)備知識(shí):

①若a=a×b,則ma=ma×b=(ma)b

②若b=c+d則mb=mc+d=mc×md

四、被3、9、11除后的余數(shù)特征:

①一個(gè)自然數(shù)m,n表示m的各個(gè)數(shù)位上數(shù)字的和,則m≡n(mod9)或(mod3);

②一個(gè)自然數(shù)m,_表示m的各個(gè)奇數(shù)位上數(shù)字的和,y表示m的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則m≡y-_或m≡11-(_-y)(mod11);

五、費(fèi)爾馬小定理:

如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(modp)。

第8篇 小學(xué)生奧數(shù)知識(shí)點(diǎn)學(xué)習(xí)方法總結(jié) 700字

當(dāng)有人問(wèn)及世界科學(xué)家愛(ài)因斯坦取得成功的奧秘時(shí),他寫(xiě)下一個(gè)有名的公式: ω = _ + y + z。ω代表成功,_代表勤奮,y代表正確的方法,z代表少說(shuō)空話(huà)。學(xué)習(xí)數(shù)學(xué)也是這樣,對(duì)學(xué)習(xí)目的明確,學(xué)習(xí)態(tài)度端正的學(xué)生來(lái)說(shuō),要想少走彎路,提高學(xué)習(xí)效果的關(guān)鍵是講究學(xué)習(xí)方法。

那么怎樣學(xué)好奧數(shù)呢?

1.數(shù)學(xué)概念的學(xué)習(xí)方法:

數(shù)學(xué)概念是反映數(shù)學(xué)對(duì)象本質(zhì)屬性的思維形式,它的定義方式有描述性的,有指明外延的,有種概念加類(lèi)差等方式。一個(gè)數(shù)學(xué)概念需要記住名稱(chēng),敘述出本質(zhì)屬性,體會(huì)出所涉及的范圍,并應(yīng)用概念準(zhǔn)確進(jìn)行判斷。

下面我歸納出數(shù)學(xué)概念的學(xué)習(xí)方法:

⑴閱讀概論,記住名稱(chēng)或符號(hào)。

⑵背誦定義,掌握特性。

⑶舉出正反實(shí)例,體會(huì)概念反映的范圍。

⑷進(jìn)行練習(xí),準(zhǔn)確地判斷。

與其它概念進(jìn)行比較,弄清概念間的關(guān)系。

2.數(shù)學(xué)公式的學(xué)習(xí)方法:

公式具有抽象性,公式中的字母代表一定范圍內(nèi)的無(wú)窮多個(gè)數(shù)。有的學(xué)生在學(xué)習(xí)公式時(shí),可以在短時(shí)間內(nèi)掌握,而有的學(xué)生卻要反來(lái)復(fù)去地體會(huì),才能跳出千變?nèi)f化的數(shù)字關(guān)系的泥堆里。

我們介紹的數(shù)學(xué)公式的學(xué)習(xí)方法是:

⑴書(shū)寫(xiě)公式,記住公式中字母間的關(guān)系。

⑵懂得公式的來(lái)龍去脈,掌握推導(dǎo)過(guò)程。

⑶用數(shù)字驗(yàn)算公式,在公式具體化過(guò)程中體會(huì)公式中反映的規(guī)律。

⑷將公式進(jìn)行各種變換,了解其不同的變化形式。

⑸將公式中的字母想象成抽象的框架,達(dá)到自如地應(yīng)用公式。

3.數(shù)學(xué)定理的學(xué)習(xí)方法:

一個(gè)定理包含條件和結(jié)論兩部分,定理必須進(jìn)行證明,證明過(guò)程是連接條件和結(jié)論的橋梁,而學(xué)習(xí)定理是為了更好地應(yīng)用它解決各種問(wèn)題。

下面我們歸納出數(shù)學(xué)定理的學(xué)習(xí)方法:

⑴背誦定理。

⑵分清定理的條件和結(jié)論。

⑶理解定理的證明過(guò)程。

⑷應(yīng)用定理證明有關(guān)問(wèn)題。

⑸體會(huì)定理與有關(guān)定理和概念的內(nèi)在關(guān)系。

第9篇 小學(xué)奧數(shù)數(shù)論問(wèn)題知識(shí)總結(jié):數(shù)的整除性規(guī)律 750字

數(shù)的整除性規(guī)律

能被2或5整除的數(shù)的特征一個(gè)數(shù)的末位能被2或5整除,這個(gè)數(shù)就能被2或5整除

能被3或9整除的數(shù)的特征一個(gè)數(shù),當(dāng)且僅當(dāng)它的各個(gè)數(shù)位上的數(shù)字之和能被3和9整除時(shí),這個(gè)數(shù)便能被3或9整除。

例如,1248621各位上的數(shù)字之和是1+2+4+8+6+2+1=24

3|24,則3|1248621。

又如,372681各位上的數(shù)字之和是3+7+2+6+8+1=27

9|27,則9|372681。

能被4或25整除的數(shù)的特征一個(gè)數(shù),當(dāng)且僅當(dāng)它的末兩位數(shù)能被4或25整除時(shí),這個(gè)數(shù)便能被4或25整除。

例如,

173824的末兩位數(shù)為24,4|24,則4|173824。

43586775的末兩位數(shù)為75,25|75,則25|43586775。

能被8或125整除的數(shù)的特征一個(gè)數(shù),當(dāng)且僅當(dāng)它的末三位數(shù)字為0,或者末三位數(shù)能被8或125整除時(shí),這個(gè)數(shù)便能被8或125整除。

例如,

32178000的末三位數(shù)字為0,則這個(gè)數(shù)能被8整除,也能夠被125整除。

3569824的末三位數(shù)為824,8|824,則8|3569824。

214813750的末三位數(shù)為750,125|750,則125|214813750。

能被7、11、13整除的數(shù)的特征一個(gè)數(shù),當(dāng)且僅當(dāng)它的末三位數(shù)字所表示的數(shù),與末三位以前的數(shù)字所表示的數(shù)的差(大減小的差)能被7、11、13整除時(shí),這個(gè)數(shù)就能被7、11、13整除。

例如,75523的末三位數(shù)為523,末三位以前的數(shù)字所表示的數(shù)是75,523-75=448,448÷7=64,即7|448,則7|75523。

又如,1095874的末三位數(shù)為874,末三位以前的數(shù)字所表示的數(shù)是1095,1095-874=221,221÷13=17,即13|221,則13|1095874。

再如,868967的末三位數(shù)為967,末三位以前的數(shù)字所表示的數(shù)是868,967-868=99,99÷11=9,即11|99,則11|868967。

此外,能被11整除的數(shù)的特征,還可以這樣敘述:一個(gè)數(shù),當(dāng)且僅當(dāng)它的奇數(shù)位上數(shù)字之和,與偶數(shù)位上數(shù)字之和的差(大減?。┠鼙?1整除時(shí),則這個(gè)數(shù)便能被11整除。

例如,4239235的奇數(shù)位上的數(shù)字之和為4+3+2+5=14,偶數(shù)位上數(shù)字之和為2+9+3=14,二者之差為14-14=0,0÷11=0,即11|0,則11|4239235。

第10篇 小學(xué)奧數(shù)公式總結(jié) 1300字

小學(xué)奧數(shù)常用公式

1 、每份數(shù)×份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù) 總數(shù)÷份數(shù)=每份數(shù)

2 、1倍數(shù)×倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù) 幾倍數(shù)÷倍數(shù)=1倍數(shù)

3 、速度×?xí)r間=路程 路程÷速度=時(shí)間 路程÷時(shí)間=速度

4 、單價(jià)×數(shù)量=總價(jià) 總價(jià)÷單價(jià)=數(shù)量 總價(jià)÷數(shù)量=單價(jià)

5 、工作效率×工作時(shí)間=工作總量 工作總量÷工作效率=工作時(shí)間 工作總量÷工作時(shí)間=工作效率

6 、正方形 c周長(zhǎng) s面積 a邊長(zhǎng) 周長(zhǎng)=邊長(zhǎng)× 4 c=4a 面積=邊長(zhǎng)×邊長(zhǎng) s=a×a

7 、正方體 v:體積 a:棱長(zhǎng) 表面積=棱長(zhǎng)×棱長(zhǎng)×6 s表=a×a×6 體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng) v=a×a×a

8、長(zhǎng)方形 c周長(zhǎng) s面積 a邊長(zhǎng) 周長(zhǎng)=(長(zhǎng)+寬)×2 c=2(a+b) 面積=長(zhǎng)×寬 s=ab

9 、長(zhǎng)方體 v:體積 s:面積 a:長(zhǎng) b: 寬 h:高 (1)表面積(長(zhǎng)×寬+長(zhǎng)×高+寬×高)×2 s=2(ab+ah+bh) (2)體積=長(zhǎng)×寬×高 v=abh

10 、三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底三角形底=面積 ×2÷高

11 、平行四邊形 s面積 a底 h高 面積=底×高 s=ah

12 、 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2

13、 圓形 s面積 c周長(zhǎng) ∏ d=直徑 r=半徑 (1)周長(zhǎng)=直徑×∏=2×∏×半徑 c=∏d=2∏r (2)面積=半徑×半徑×∏

14 、圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(zhǎng) (1)側(cè)面積=底面周長(zhǎng)×高 (2)表面積=側(cè)面積+底面積×2 (3)體積=底面積×高 (4)體積=側(cè)面積÷2×半徑

15、圓錐體 v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 總數(shù)÷總份數(shù)=平均數(shù)

16、和差問(wèn)題的公式 (和+差)÷2=大數(shù) (和-差)÷2=小數(shù)

17、和倍問(wèn)題 和÷(倍數(shù)-1)=小數(shù) 小數(shù)×倍數(shù)=大數(shù) (或者 和-小數(shù)=大數(shù))

18、差倍問(wèn)題 差÷(倍數(shù)-1)=小數(shù) 小數(shù)×倍數(shù)=大數(shù) (或 小數(shù)+差=大數(shù))

19、植樹(shù)問(wèn)題 1 非封閉線(xiàn)路上的植樹(shù)問(wèn)題主要可分為以下三種情形: ⑴如果在非封閉線(xiàn)路的兩端都要植樹(shù),那: 株數(shù)=段數(shù)+1=全長(zhǎng)÷株距-1 全長(zhǎng)=株距×(株數(shù)-1) 株距=全長(zhǎng)÷(株數(shù)-1) ⑵如果在非封閉線(xiàn)路的一端要植樹(shù),另一端不要植樹(shù),那就這樣: 株數(shù)=段數(shù)=全長(zhǎng)÷株距 全長(zhǎng)=株距×株數(shù) 株距=全長(zhǎng)÷株數(shù) ⑶如果在非封閉線(xiàn)路的兩端都不要植樹(shù),那么: 株數(shù)=段數(shù)-1=全長(zhǎng)÷株距-1 全長(zhǎng)=株距×(株數(shù)+1) 株距=全長(zhǎng)÷(株數(shù)+1) 2 封閉線(xiàn)路上的植樹(shù)問(wèn)題的數(shù)量關(guān)系如下 : 株數(shù)=段數(shù)=全長(zhǎng)÷株距 全長(zhǎng)=株距×株數(shù) 株距=全長(zhǎng)÷株數(shù)

20、盈虧問(wèn)題 (盈+虧)÷兩次分配量之差=參加分配的份數(shù) (大盈-小盈)÷兩次分配量之差=參加分配的份數(shù) (大虧-小虧)÷兩次分配量之差=參加分配的份數(shù)

21、相遇問(wèn)題 相遇路程=速度和×相遇時(shí)間 相遇時(shí)間=相遇路程÷速度和 速度和=相遇路程÷相遇時(shí)間

22、追及問(wèn)題 追及距離=速度差×追及時(shí)間 追及時(shí)間=追及距離÷速度差 速度差=追及距離÷追及時(shí)間

23、流水問(wèn)題 順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2

24、濃度問(wèn)題 溶質(zhì)的重量+溶劑的重量=溶液的重量 溶質(zhì)的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質(zhì)的重量溶質(zhì)的重量÷濃度=溶液的重量

25、利潤(rùn)與折扣問(wèn)題 利潤(rùn)=售出價(jià)-成本 利潤(rùn)率=利潤(rùn)÷成本×100%=(售出價(jià)÷成本-1)×100% 漲跌金額=本金×漲跌百分比 折扣=實(shí)際售價(jià)÷原售價(jià)×100%(折扣<1) 利息=本金×利率×?xí)r間稅后利息=本金×利率×?xí)r間×(1-20%)

第11篇 小學(xué)奧數(shù)常考的知識(shí)點(diǎn)總結(jié) 600字

雞兔同籠問(wèn)題

基本概念:雞兔同籠問(wèn)題又稱(chēng)為置換問(wèn)題、假設(shè)問(wèn)題,就是把假設(shè)錯(cuò)的那部分置換出來(lái);

基本思路:

①假設(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):

②假設(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;

③每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;

④再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。

基本公式:

①把所有雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))

②把所有兔子假設(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))

關(guān)鍵問(wèn)題:找出總量的差與單位量的差。

和差倍問(wèn)題

和差問(wèn)題和倍問(wèn)題差倍問(wèn)題

已知條件幾個(gè)數(shù)的和與差幾個(gè)數(shù)的和與倍數(shù)幾個(gè)數(shù)的差與倍數(shù)

公式適用范圍已知兩個(gè)數(shù)的和,差,倍數(shù)關(guān)系

公式①(和-差)÷2=較小數(shù)

較小數(shù)+差=較大數(shù)

和-較小數(shù)=較大數(shù)

②(和+差)÷2=較大數(shù)

較大數(shù)-差=較小數(shù)

和-較大數(shù)=較小數(shù)

和÷(倍數(shù)+1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

和-小數(shù)=大數(shù)

差÷(倍數(shù)-1)=小數(shù)

小數(shù)×倍數(shù)=大數(shù)

小數(shù)+差=大數(shù)

關(guān)鍵問(wèn)題求出同一條件下的

和與差和與倍數(shù)差與倍數(shù)

植樹(shù)問(wèn)題

基本類(lèi)型在直線(xiàn)或者不封閉的曲線(xiàn)上植樹(shù),兩端都植樹(shù)在直線(xiàn)或者不封閉的曲線(xiàn)上植樹(shù),兩端都不植樹(shù)在直線(xiàn)或者不封閉的曲線(xiàn)上植樹(shù),只有一端植樹(shù)封閉曲線(xiàn)上植樹(shù)

基本公式棵數(shù)=段數(shù)+1

棵距×段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)-1

棵距×段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)

棵距×段數(shù)=總長(zhǎng)

關(guān)鍵問(wèn)題確定所屬類(lèi)型,從而確定棵數(shù)與段數(shù)的關(guān)系

第12篇 小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié):分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用 600字

分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用

基本概念與性質(zhì):

分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。

分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。

分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。

百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)百分之幾的數(shù)。

常用方法:

①逆向思維方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。

②對(duì)應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對(duì)應(yīng)關(guān)系。

③轉(zhuǎn)化思維方法:把一類(lèi)應(yīng)用題轉(zhuǎn)化成另一類(lèi)應(yīng)用題進(jìn)行解答。最常見(jiàn)的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見(jiàn)的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。

④假設(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計(jì)算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。

⑤量不變思維方法:在變化的各個(gè)量當(dāng)中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:a、分量發(fā)生變化,總量不變。b、總量發(fā)生變化,但其中有的分量不變。c、總量和分量都發(fā)生變化,但分量之間的差量不變化。

⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。

⑦同倍率法:總量和分量之間按照同分率變化的規(guī)律進(jìn)行處理。

⑧濃度配比法:一般應(yīng)用于總量和分量都發(fā)生變化的狀況。

第13篇 小學(xué)奧數(shù)數(shù)列規(guī)律填數(shù)規(guī)律總結(jié) 500字

1、順等差數(shù)列,前一個(gè)數(shù)減去后一個(gè)數(shù)的差相等。例如:1,3,5,7,9,…

逆等差數(shù)列,后一個(gè)數(shù)減去前一個(gè)數(shù)的差相等。例如:10,8,6,4,2…;

2、順等比數(shù)列,即前一個(gè)數(shù)除以后一個(gè)數(shù)的商相等。例如:2,4,8,16,32…;

逆等比數(shù)列,即后一個(gè)數(shù)除以前一個(gè)數(shù)的商相等。例如:1024,512,256,128,…;

3、兔子數(shù)列,即單數(shù)序號(hào)的數(shù)字與雙數(shù)序號(hào)的數(shù)分別形成規(guī)律。

例如8,15,10,13,12,11,(14),(9)這里8,10,12,14成規(guī)律,15,13,12,11,9成規(guī)律;

4、質(zhì)數(shù)數(shù)列規(guī)律,例如:2,3,5,7,11,(13),(17)....這些數(shù)學(xué)都為質(zhì)數(shù);

注意:一般考試只有以下一種情況,而且容易出現(xiàn)到小升初考試,要特別注意。

5、“平方數(shù)列”、“立方數(shù)列”等,

例如:平方數(shù)列:1、4、9、16、27、64、125、…

立方數(shù)列:1、8、27、64、81、256、625、…

6、相鄰數(shù)字差呈現(xiàn)規(guī)律。

數(shù)字之間差呈現(xiàn)等差數(shù)列,例如:1、3、7、13、21、31、43、…

數(shù)字之間差呈現(xiàn)等比數(shù)列,例如:1、3、7、15、31、63、…

7、多個(gè)數(shù)字間呈現(xiàn)規(guī)律,(本題考查較少)

裴波那契數(shù)列,即任意連續(xù)兩個(gè)數(shù)字之和等于第三個(gè)數(shù)字,

例如:1、1、2、3、5、8、13、21、34、…

任意連續(xù)三個(gè)數(shù)字之和等于第四個(gè)數(shù)字,

例如:1、1、1、3、5、9、17、31、57、105、…

第14篇 小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié)之分?jǐn)?shù)大小的比較 400字

分?jǐn)?shù)大小的比較

基本方法:

①通分分子法:使所有分?jǐn)?shù)的分子相同,根據(jù)同分子分?jǐn)?shù)大小和分母的關(guān)系比較。

②通分分母法:使所有分?jǐn)?shù)的分母相同,根據(jù)同分母分?jǐn)?shù)大小和分子的關(guān)系比較。

③基準(zhǔn)數(shù)法:確定一個(gè)標(biāo)準(zhǔn),使所有的分?jǐn)?shù)都和它進(jìn)行比較。

④分子和分母大小比較法:當(dāng)分子和分母的差一定時(shí),分子或分母越大的分?jǐn)?shù)值越大。

⑤倍率比較法:當(dāng)比較兩個(gè)分子或分母同時(shí)變化時(shí)分?jǐn)?shù)的大小,除了運(yùn)用以上方法外,可以用同倍率的變化關(guān)系比較分?jǐn)?shù)的大小。(具體運(yùn)用見(jiàn)同倍率變化規(guī)律)

⑥轉(zhuǎn)化比較方法:把所有分?jǐn)?shù)轉(zhuǎn)化成小數(shù)(求出分?jǐn)?shù)的值)后進(jìn)行比較。

⑦倍數(shù)比較法:用一個(gè)數(shù)除以另一個(gè)數(shù),結(jié)果得數(shù)和1進(jìn)行比較。

⑧大小比較法:用一個(gè)分?jǐn)?shù)減去另一個(gè)分?jǐn)?shù),得出的數(shù)和0比較。

⑨倒數(shù)比較法:利用倒數(shù)比較大小,然后確定原數(shù)的大小。

⑩基準(zhǔn)數(shù)比較法:確定一個(gè)基準(zhǔn)數(shù),每一個(gè)數(shù)與基準(zhǔn)數(shù)比較。

第15篇 小學(xué)六年級(jí)奧數(shù)計(jì)算分?jǐn)?shù)和百分?jǐn)?shù)知識(shí)點(diǎn)總結(jié) 400字

分?jǐn)?shù)

1分?jǐn)?shù)的意義

把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分?jǐn)?shù)。

在分?jǐn)?shù)里,中間的橫線(xiàn)叫做分?jǐn)?shù)線(xiàn);分?jǐn)?shù)線(xiàn)下面的數(shù),叫做分母,表示把單位“1”平均分成多少份;分?jǐn)?shù)線(xiàn)下面的數(shù)叫做分子,表示有這樣的多少份。

把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分?jǐn)?shù)單位。

2分?jǐn)?shù)的分類(lèi)

真分?jǐn)?shù):分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù)。真分?jǐn)?shù)小于1。

假分?jǐn)?shù):分子比分母大或者分子和分母相等的分?jǐn)?shù),叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或等于1。

帶分?jǐn)?shù):假分?jǐn)?shù)可以寫(xiě)成整數(shù)與真分?jǐn)?shù)合成的數(shù),通常叫做帶分?jǐn)?shù)。

3約分和通分

把一個(gè)分?jǐn)?shù)化成同它相等但是分子、分母都比較小的分?jǐn)?shù),叫做約分。分子分母是互質(zhì)數(shù)的分?jǐn)?shù),叫做最簡(jiǎn)分?jǐn)?shù)。

把異分母分?jǐn)?shù)分別化成和原來(lái)分?jǐn)?shù)相等的同分母分?jǐn)?shù),叫做通分。

百分?jǐn)?shù)

表示一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的數(shù)叫做百分?jǐn)?shù),也叫做百分率

或百分比。百分?jǐn)?shù)通常用“%”來(lái)表示。百分號(hào)是表示百分?jǐn)?shù)的符號(hào)。

小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié) 十五篇

一、 計(jì)算1. 四則混合運(yùn)算繁分?jǐn)?shù)⑴ 運(yùn)算順序⑵ 分?jǐn)?shù)、小數(shù)混合運(yùn)算技巧一般而言:① 加減運(yùn)算中,能化成有限小數(shù)的統(tǒng)一以小數(shù)形式;② 乘除運(yùn)算中,統(tǒng)一以分?jǐn)?shù)形式。⑶帶分?jǐn)?shù)與假分?jǐn)?shù)的互化⑷繁分?jǐn)?shù)的化簡(jiǎn)2. 簡(jiǎn)便計(jì)算⑴湊整思想⑵基準(zhǔn)數(shù)思想⑶裂項(xiàng)與拆分⑷提取公因數(shù)⑸商不變性質(zhì)⑹改變運(yùn)算順序① 運(yùn)算定律的綜合運(yùn)用② 連減的性質(zhì)③ 連除的性質(zhì)④
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

相關(guān)奧數(shù)信息

  • 小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié) 十五篇
  • 小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié) 十五篇83人關(guān)注

    一、 計(jì)算1. 四則混合運(yùn)算繁分?jǐn)?shù)⑴ 運(yùn)算順序⑵ 分?jǐn)?shù)、小數(shù)混合運(yùn)算技巧一般而言:① 加減運(yùn)算中,能化成有限小數(shù)的統(tǒng)一以小數(shù)形式;② 乘除運(yùn)算中,統(tǒng)一以分?jǐn)?shù)形式。⑶帶 ...[更多]

  • 小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié)(十二篇)
  • 小學(xué)奧數(shù)知識(shí)點(diǎn)總結(jié)(十二篇)58人關(guān)注

    幾何面積基本思路:在一些面積的計(jì)算上,不能直接運(yùn)用公式的情況下,一般需要對(duì)圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計(jì) ...[更多]

  • 小學(xué)奧數(shù)知識(shí)總結(jié)(十二篇)
  • 小學(xué)奧數(shù)知識(shí)總結(jié)(十二篇)52人關(guān)注

    工程問(wèn)題基本公式:①工作總量=工作效率×工作時(shí)間②工作效率=工作總量÷工作時(shí)間③工作時(shí)間=工作總量÷工作效率基本思路:①假設(shè)工作總量為“1”(和總工作量無(wú)關(guān));②假 ...[更多]

  • 小學(xué)奧數(shù)總結(jié)(十六篇)
  • 小學(xué)奧數(shù)總結(jié)(十六篇)25人關(guān)注

    幾何面積基本思路:在一些面積的計(jì)算上,不能直接運(yùn)用公式的情況下,一般需要對(duì)圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計(jì) ...[更多]

  • 小學(xué)生奧數(shù)總結(jié)(3篇)
  • 小學(xué)生奧數(shù)總結(jié)(3篇)11人關(guān)注

    當(dāng)有人問(wèn)及世界科學(xué)家愛(ài)因斯坦取得成功的奧秘時(shí),他寫(xiě)下一個(gè)有名的公式: ω = x + y + z。ω代表成功,x代表勤奮,y代表正確的方法,z代表少說(shuō)空話(huà)。學(xué)習(xí)數(shù)學(xué)也是這樣,對(duì)學(xué) ...[更多]