歡迎光臨管理范文網(wǎng)
當(dāng)前位置:工作總結(jié) > 總結(jié)大全 > 總結(jié)范文

一元一次方程總結(jié)(十六篇)

發(fā)布時間:2023-06-21 11:50:01 查看人數(shù):19

一元一次方程總結(jié)

【第1篇 一元一次方程知識點(diǎn)總結(jié)

一、方程的有關(guān)概念

1.方程:含有未知數(shù)的等式就叫做方程.

2. 一元一次方程:只含有一個未知數(shù)(元)_,未知數(shù)_的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50_=1800, 2(_+1.5_)=5等都是一元一次方程.

3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.

二、等式的性質(zhì)

等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.

等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c

等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移項法則:

把等式一邊的某項變號后移到另一邊,叫做移項.

四、去括號法則

1. 括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.

2. 括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.

五、解方程的一般步驟

1. 去分母(方程兩邊同乘各分母的最小公倍數(shù))

2. 去括號(按去括號法則和分配律)

3. 移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

4. 合并(把方程化成a_ = b (a≠0)形式)

5. 系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解_=a(b).

六、用方程思想解決實(shí)際問題的一般步驟

1. 審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.

2. 設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)

3. 列:根據(jù)題意列方程.

4. 解:解出所列方程.

5. 檢:檢驗(yàn)所求的解是否符合題意.

6. 答:寫出答案(有單位要注明答案)

七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系

1. 和、差、倍、分問題:

增長量=原有量×增長率 現(xiàn)在量=原有量+增長量

(1)倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現(xiàn).

(2)多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余……”來體現(xiàn).

2. 等積變形問題:

(1)“等積變形”是以形狀改變而體積不變?yōu)榍疤?常用等量關(guān)系為:

①形狀面積變了,周長沒變;

②原料體積=成品體積.

(2 )常見幾何圖形的面積、體積、周長計算公式,依據(jù)形雖變,但體積不變.

①圓柱體的體積公式 v=底面積×高=s·h=πr2h

②長方體的體積 v=長×寬×高=abc

3. 勞力調(diào)配問題:

這類問題要搞清人數(shù)的變化,常見題型有:

(1)既有調(diào)入又有調(diào)出;

(2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變;

(3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變

4. 數(shù)字問題

(1)要搞清楚數(shù)的表示方法:一般可設(shè)個位數(shù)字為a,十位數(shù)字為b,百位數(shù)字為c.

十位數(shù)可表示為10b+a, 百位數(shù)可表示為100c+10b+a. 然后抓住數(shù)字間或新數(shù)、原數(shù)之間的關(guān)系找等量關(guān)系列方程(其中a、b、c均為整數(shù),且1≤a≤9, 0≤b≤9, 0≤c≤9)

(2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n—2表示;奇數(shù)用2n+1或2n—1表示.

5. 工程問題:

工程問題:工作量=工作效率×工作時間

完成某項任務(wù)的各工作量的和=總工作量=1

6.行程問題:

路程=速度×?xí)r間 時間=路程÷速度 速度=路程÷時間

(1)相遇問題: 快行距+慢行距=原距

(2)追及問題: 快行距-慢行距=原距

(3)航行問題:順?biāo)?風(fēng))速度=靜水(風(fēng))速度+水流(風(fēng))速度

逆水(風(fēng))速度=靜水(風(fēng))速度-水流(風(fēng))速度

抓住兩碼頭間距離不變,水流速和船速(靜不速)不變的特點(diǎn)考慮相等關(guān)系.

7. 商品銷售問題

(1)商品利潤率=商品利潤/商品成本×100%

(2)商品銷售額=商品銷售價×商品銷售量

(3)商品的銷售利潤=(銷售價-成本價)×銷售量

(4)商品打幾折出售,就是按原標(biāo)價的百分之幾十出售,如商品打8折出售,即按原標(biāo)價的80%出售.有關(guān)關(guān)系式:商品售價=商品標(biāo)價×折扣率

(5)商品利潤=商品售價—商品進(jìn)價=商品標(biāo)價×折扣率—商品進(jìn)價

8. 儲蓄問題

⑴ 顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率.利息的20%付利息稅

⑵ 利息=本金×利率×期數(shù)

本息和=本金+利息

利息稅=利息×稅率(20%)

(3)利潤=每個期數(shù)內(nèi)的利息/本金×100%

【第2篇 2023年中考數(shù)學(xué)知識點(diǎn)總結(jié):一元一次方程

一、方程的有關(guān)概念

1.方程:含有未知數(shù)的等式就叫做方程.

2. 一元一次方程:只含有一個未知數(shù)(元)_,未知數(shù)_的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50_=1800, 2(_+1.5_)=5等都是一元一次方程.

3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.

二、等式的性質(zhì)

等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.

等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c

等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項.

四、去括號法則

1. 括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.

2. 括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.

五、解方程的一般步驟

1. 去分母(方程兩邊同乘各分母的最小公倍數(shù))

2. 去括號(按去括號法則和分配律)

3. 移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

4. 合并(把方程化成a_ = b (a≠0)形式)

5. 系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解_=a(b).

六、用方程思想解決實(shí)際問題的一般步驟

1. 審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.

2. 設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)

3. 列:根據(jù)題意列方程.

4. 解:解出所列方程.

5. 檢:檢驗(yàn)所求的解是否符合題意.

6. 答:寫出答案(有單位要注明答案)

七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系

1. 和、差、倍、分問題:

增長量=原有量×增長率 現(xiàn)在量=原有量+增長量

(1)倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現(xiàn).

(2)多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余……”來體現(xiàn).

2. 等積變形問題:

(1)“等積變形”是以形狀改變而體積不變?yōu)榍疤?常用等量關(guān)系為:

①形狀面積變了,周長沒變;

②原料體積=成品體積.

(2 常見幾何圖形的面積、體積、周長計算公式,依據(jù)形雖變,但體積不變.

①圓柱體的體積公式 v=底面積×高=s·h=πr2h

②長方體的體積 v=長×寬×高=abc

3. 勞力調(diào)配問題:

這類問題要搞清人數(shù)的變化,常見題型有:

(1)既有調(diào)入又有調(diào)出;

(2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變;

(3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變

4. 數(shù)字問題

(1)要搞清楚數(shù)的表示方法:一般可設(shè)個位數(shù)字為a,十位數(shù)字為b,百位數(shù)字為c.

十位數(shù)可表示為10b+a, 百位數(shù)可表示為100c+10b+a. 然后抓住數(shù)字間或新數(shù)、原數(shù)之間的關(guān)系找等量關(guān)系列方程(其中a、b、c均為整數(shù),且1≤a≤9, 0≤b≤9, 0≤c≤9)

(2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n—2表示;奇數(shù)用2n+1或2n—1表示.

5. 工程問題:

工程問題:工作量=工作效率×工作時間

完成某項任務(wù)的各工作量的和=總工作量=1

6.行程問題:

路程=速度×?xí)r間 時間=路程÷速度 速度=路程÷時間

(1)相遇問題: 快行距+慢行距=原距

(2)追及問題: 快行距-慢行距=原距

(3)航行問題:順?biāo)?風(fēng))速度=靜水(風(fēng))速度+水流(風(fēng))速度

逆水(風(fēng))速度=靜水(風(fēng))速度-水流(風(fēng))速度

抓住兩碼頭間距離不變,水流速和船速(靜不速)不變的特點(diǎn)考慮相等關(guān)系.

7. 商品銷售問題

(1)商品利潤率=商品利潤/商品成本價_100%

(2)商品銷售額=商品銷售價×商品銷售量

(3)商品的銷售利潤=(銷售價-成本價)×銷售量

(4)商品打幾折出售,就是按原標(biāo)價的百分之幾十出售,如商品打8折出售,即按原標(biāo)價的80%出售.有關(guān)關(guān)系式:商品售價=商品標(biāo)價×折扣率

(5)商品利潤=商品售價—商品進(jìn)價=商品標(biāo)價×折扣率—商品進(jìn)價

8. 儲蓄問題

⑴ 顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率.利息的20%付利息稅

⑵ 利息=本金×利率×期數(shù)

本息和=本金+利息

利息稅=利息×稅率(20%)

(3)利潤=每個期數(shù)內(nèi)的利息/本金_100%

【第3篇 初中數(shù)學(xué)一元一次方程知識點(diǎn)總結(jié)

關(guān)于初中數(shù)學(xué)一元一次方程知識點(diǎn)總結(jié)

一、方程的有關(guān)概念

1.方程:含有未知數(shù)的等式就叫做方程.

2. 一元一次方程:只含有一個未知數(shù)(元)_,未知數(shù)_的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50_=1800, 2(_+1.5_)=5等都是一元一次方程.

3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的.解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.

二、等式的性質(zhì)

等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.

等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c

等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移項法則:

把等式一邊的某項變號后移到另一邊,叫做移項.

四、去括號法則

1. 括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.

2. 括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.

五、解方程的一般步驟

1. 去分母(方程兩邊同乘各分母的最小公倍數(shù))

2. 去括號(按去括號法則和分配律)

3. 移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

4. 合并(把方程化成a_ = b (a≠0)形式)

5. 系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解_=a(b).

六、用方程思想解決實(shí)際問題的一般步驟

1. 審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.

2. 設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)

3. 列:根據(jù)題意列方程.

4. 解:解出所列方程.

5. 檢:檢驗(yàn)所求的解是否符合題意.

6. 答:寫出答案(有單位要注明答案)

七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系

1. 和、差、倍、分問題:

增長量=原有量×增長率 現(xiàn)在量=原有量+增長量

(1)倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現(xiàn).

(2)多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余……”來體現(xiàn).

2. 等積變形問題:

(1)“等積變形”是以形狀改變而體積不變?yōu)榍疤?常用等量關(guān)系為:

①形狀面積變了,周長沒變;

②原料體積=成品體積.

(2 )常見幾何圖形的面積、體積、周長計算公式,依據(jù)形雖變,但體積不變.

①圓柱體的體積公式 v=底面積×高=s·h=πr2h

②長方體的體積 v=長×寬×高=abc

3. 勞力調(diào)配問題:

這類問題要搞清人數(shù)的變化,常見題型有:

(1)既有調(diào)入又有調(diào)出;

(2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變;

(3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變

4. 數(shù)字問題

(1)要搞清楚數(shù)的表示方法:一般可設(shè)個位數(shù)字為a,十位數(shù)字為b,百位數(shù)字為c.

十位數(shù)可表示為10b+a, 百位數(shù)可表示為100c+10b+a. 然后抓住數(shù)字間或新數(shù)、原數(shù)之間的關(guān)系找等量關(guān)系列方程(其中a、b、c均為整數(shù),且1≤a≤9, 0≤b≤9, 0≤c≤9)

(2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n—2表示;奇數(shù)用2n+1或2n—1表示.

5. 工程問題:

工程問題:工作量=工作效率×工作時間

完成某項任務(wù)的各工作量的和=總工作量=1

6.行程問題:

路程=速度×?xí)r間 時間=路程÷速度 速度=路程÷時間

(1)相遇問題: 快行距+慢行距=原距

(2)追及問題: 快行距-慢行距=原距

(3)航行問題:順?biāo)?風(fēng))速度=靜水(風(fēng))速度+水流(風(fēng))速度

逆水(風(fēng))速度=靜水(風(fēng))速度-水流(風(fēng))速度

抓住兩碼頭間距離不變,水流速和船速(靜不速)不變的特點(diǎn)考慮相等關(guān)系.

7. 商品銷售問題

(1)商品利潤率=商品利潤/商品成本×100%

(2)商品銷售額=商品銷售價×商品銷售量

(3)商品的銷售利潤=(銷售價-成本價)×銷售量

(4)商品打幾折出售,就是按原標(biāo)價的百分之幾十出售,如商品打8折出售,即按原標(biāo)價的80%出售.有關(guān)關(guān)系式:商品售價=商品標(biāo)價×折扣率

(5)商品利潤=商品售價—商品進(jìn)價=商品標(biāo)價×折扣率—商品進(jìn)價

8. 儲蓄問題

⑴ 顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率.利息的20%付利息稅

⑵ 利息=本金×利率×期數(shù)

本息和=本金+利息

利息稅=利息×稅率(20%)

(3)利潤=每個期數(shù)內(nèi)的利息/本金×100%

【第4篇 一元一次方程的知識點(diǎn)總結(jié)

一元一次方程的知識點(diǎn)總結(jié)

一、方程的有關(guān)概念

1。方程:含有未知數(shù)的等式就叫做方程。

2。一元一次方程:只含有一個未知數(shù)(元)_,未知數(shù)_的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如:1700+50_=1800,2(_+1。5_)=5等都是一元一次方程。

3。方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解。

注:⑴方程的解和解方程是不同的'概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論。

二、等式的性質(zhì)

等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等。用式子形式表示為:如果a=b,那么a±c=b±c

(2)等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項。

四、去括號法則

1。括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同。

2。括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變。

【第5篇 上海初中數(shù)學(xué)一元一次方程知識點(diǎn)總結(jié)

有關(guān)上海初中數(shù)學(xué)一元一次方程知識點(diǎn)總結(jié)

上海初中數(shù)學(xué)一元一次方程知識點(diǎn)總結(jié)

△=b2-4ac是一元一次方程的根,接下來為大家整合的是上海初中數(shù)學(xué)一元一次方程根的情況知識點(diǎn)總結(jié)。

一元一次方程根的情況

△=b2-4ac

當(dāng)△>;0時,一元二次方程有2個不相等的實(shí)數(shù)根;

當(dāng)△=0時,一元二次方程有2個相同的實(shí)數(shù)根;

當(dāng)△<0時,一元二次方程沒有實(shí)數(shù)根

溫馨提示:大家一定要切記當(dāng)△<0時,一元二次方程沒有實(shí)數(shù)根。

初中數(shù)學(xué)知識點(diǎn)總結(jié):平面直角坐標(biāo)系

下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

平面直角坐標(biāo)系

平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

三個規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。

③象限的`規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成

對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

平面直角坐標(biāo)系的構(gòu)成

在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o稱為直角坐標(biāo)系的原點(diǎn)。

通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

初中數(shù)學(xué)知識點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

下面是對數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

點(diǎn)的坐標(biāo)的性質(zhì)

建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。

對于平面內(nèi)任意一點(diǎn)c,過點(diǎn)c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)c的坐標(biāo)。

一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

希望上面對點(diǎn)的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

初中數(shù)學(xué)知識點(diǎn):因式分解的一般步驟

關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運(yùn)用公式法;若是四項或四項以上的多項式,

通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

初中數(shù)學(xué)知識點(diǎn):因式分解

下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

因式分解

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

因式分解與整式乘法的關(guān)系:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意;

①不準(zhǔn)丟字母

②不準(zhǔn)丟常數(shù)項注意查項數(shù)

③雙重括號化成單括號

④結(jié)果按數(shù)單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負(fù)號放括號外

⑦括號內(nèi)同類項合并。

通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

【第6篇 數(shù)學(xué)初一年級一元一次方程知識點(diǎn)總結(jié)

2.1 從算式到方程

方程是含有未知數(shù)的等式。

方程都只含有一個未知數(shù)(元)_,未知數(shù)_的指數(shù)都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。

解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解(solution)。

等式的性質(zhì):

1.等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。

2.等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。

2.2 從古老的代數(shù)書說起——一元一次方程的討論(1)

把等式一邊的某項變號后移到另一邊,叫做移項。

【第7篇 初一數(shù)學(xué)一元一次方程知識點(diǎn)歸納總結(jié)

初一數(shù)學(xué)一元一次方程知識點(diǎn)歸納總結(jié)

2.1從算式到方程

2.1.1一元一次方程

含有未知數(shù)的等式叫做方程。

只含有一個未知數(shù)(元),未知數(shù)的指數(shù)都是1(次),這樣的方程叫做一元一次方程。

分析實(shí)際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是數(shù)學(xué)解決實(shí)際問題的一種方法。

解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。

2.1.2等式的性質(zhì)

等式的性質(zhì)1 等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。

等式的.性質(zhì)2 等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。

2.2從古老的代數(shù)書說起--一元一次方程的討論⑴

把等式一邊的某項變號后移到另一邊,叫做移項。

2.3從買布問題說起--一元一次方程的討論⑵

方程中有帶括號的式子時,去括號的方法與有理數(shù)運(yùn)算中括號類似。

解方程就是要求出其中的未知數(shù)(例如_),通過去分母、去括號、移項、合并、系數(shù)化為1等步驟,就可以使一元一次方程逐步向著_=a的形式轉(zhuǎn)化,這個過程主要依據(jù)等式的性質(zhì)和運(yùn)算律等。

去分母:

⑴具體做法:方程兩邊都乘各分母的最小公倍數(shù)

⑵依據(jù):等式性質(zhì)2

⑶注意事項:①分子打上括號

②不含分母的項也要乘

2.4再探實(shí)際問題與一元一次方程

【第8篇 初中數(shù)學(xué)知識點(diǎn)一元一次方程總結(jié)

初中數(shù)學(xué)知識點(diǎn)一元一次方程總結(jié)

一、方程的有關(guān)概念

1.方程:含有未知數(shù)的等式就叫做方程。

2.一元一次方程:只含有一個未知數(shù)(元)_,未知數(shù)_的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如:1700+50_=1800,2(_+1.5_)=5等都是一元一次方程。

3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解。

注:⑴方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論。

二、等式的性質(zhì)

(1)等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等。用式子形式表示為:如果a=b,那么a±c=b±c

(2)等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項。

四、去括號法則

1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.

2.括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.

五、解方程的一般步驟

1.去分母(方程兩邊同乘各分母的最小公倍數(shù))

2.去括號(按去括號法則和分配律)

3.移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

4.合并(把方程化成a_=b(a≠0)形式)

5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解_=ba)。

六、用方程思想解決實(shí)際問題的.一般步驟

1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系。

2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)。

3.列:根據(jù)題意列方程。

4.解:解出所列方程。

5.檢:檢驗(yàn)所求的解是否符合題意。

6.答:寫出答案(有單位要注明答案)。

七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系

1、和、差、倍、分問題:

(1)倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現(xiàn)。

(2)多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余……”來體現(xiàn)。

2、等積變形問題:

“等積變形”是以形狀改變而體積不變?yōu)榍疤?。常用等量關(guān)系為:

①形狀面積變了,周長沒變;

②原料體積=成品體積。

3、勞力調(diào)配問題:

這類問題要搞清人數(shù)的變化,常見題型有:

(1)既有調(diào)入又有調(diào)出。

(2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變。

(3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變。

4、數(shù)字問題

(1)要搞清楚數(shù)的表示方法:一個三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個位數(shù)字為c(其中a、b、c均為整數(shù),且1≤a≤9,0≤b≤9,0≤c≤9)則這個三位數(shù)表示為:100a+10b+c

(2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n—2表示;奇數(shù)用2n+1或2n—1表示。

5、工程問題:

工程問題中的三個量及其關(guān)系為:工作總量=工作效率×工作時間

6、行程問題:

(1)行程問題中的三個基本量及其關(guān)系:路程=速度×?xí)r間。

(2)基本類型有

①相遇問題;

②追及問題;常見的還有:相背而行;行船問題;環(huán)形跑道問題。

7、商品銷售問題

有關(guān)關(guān)系式:

商品利潤=商品售價—商品進(jìn)價=商品標(biāo)價×折扣率—商品進(jìn)價

商品利潤率=商品利潤/商品進(jìn)價

商品售價=商品標(biāo)價×折扣率

8、儲蓄問題

(1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率。利息的20%付利息稅

(2)利息=本金×利率×期數(shù)

本息和=本金+利息

利息稅=利息×稅率(20%)

【第9篇 2023中考備考:初中數(shù)學(xué)知識點(diǎn)總結(jié)-一元一次方程

一、方程的有關(guān)概念

1.方程:含有未知數(shù)的等式就叫做方程.

2. 一元一次方程:只含有一個未知數(shù)(元)_,未知數(shù)_的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50_=1800, 2(_+1.5_)=5等都是一元一次方程.

3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.

二、等式的性質(zhì)

等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.

等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c

等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項.

四、去括號法則

1. 括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.

2. 括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.

五、解方程的一般步驟

1. 去分母(方程兩邊同乘各分母的最小公倍數(shù))

2. 去括號(按去括號法則和分配律)

3. 移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

4. 合并(把方程化成a_ = b (a≠0)形式)

5. 系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解_=a(b).

六、用方程思想解決實(shí)際問題的一般步驟

1. 審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.

2. 設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)

3. 列:根據(jù)題意列方程.

4. 解:解出所列方程.

5. 檢:檢驗(yàn)所求的解是否符合題意.

6. 答:寫出答案(有單位要注明答案)

七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系

1. 和、差、倍、分問題:

增長量=原有量×增長率 現(xiàn)在量=原有量+增長量

(1)倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現(xiàn).

(2)多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余……”來體現(xiàn).

2. 等積變形問題:

(1)“等積變形”是以形狀改變而體積不變?yōu)榍疤?常用等量關(guān)系為:

①形狀面積變了,周長沒變;

②原料體積=成品體積.

(2 常見幾何圖形的面積、體積、周長計算公式,依據(jù)形雖變,但體積不變.

①圓柱體的體積公式 v=底面積×高=s·h=πr2h

②長方體的體積 v=長×寬×高=abc

3. 勞力調(diào)配問題:

這類問題要搞清人數(shù)的變化,常見題型有:

(1)既有調(diào)入又有調(diào)出;

(2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變;

(3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變

4. 數(shù)字問題

(1)要搞清楚數(shù)的表示方法:一般可設(shè)個位數(shù)字為a,十位數(shù)字為b,百位數(shù)字為c.

十位數(shù)可表示為10b+a, 百位數(shù)可表示為100c+10b+a. 然后抓住數(shù)字間或新數(shù)、原數(shù)之間的關(guān)系找等量關(guān)系列方程(其中a、b、c均為整數(shù),且1≤a≤9, 0≤b≤9, 0≤c≤9)

(2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n—2表示;奇數(shù)用2n+1或2n—1表示.

5. 工程問題:

工程問題:工作量=工作效率×工作時間

完成某項任務(wù)的各工作量的和=總工作量=1

6.行程問題:

路程=速度×?xí)r間 時間=路程÷速度 速度=路程÷時間

(1)相遇問題: 快行距+慢行距=原距

(2)追及問題: 快行距-慢行距=原距

(3)航行問題:順?biāo)?風(fēng))速度=靜水(風(fēng))速度+水流(風(fēng))速度

逆水(風(fēng))速度=靜水(風(fēng))速度-水流(風(fēng))速度

抓住兩碼頭間距離不變,水流速和船速(靜不速)不變的特點(diǎn)考慮相等關(guān)系.

7. 商品銷售問題

【第10篇 2023中考數(shù)學(xué)知識點(diǎn)總結(jié):一元一次方程

一、方程的有關(guān)概念

1.方程:含有未知數(shù)的等式就叫做方程。

2.一元一次方程:只含有一個未知數(shù)(元)_,未知數(shù)_的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如:1700+50_=1800,2(_+1.5_)=5等都是一元一次方程。

3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解。

注:⑴方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論。

二、等式的性質(zhì)

(1)等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等。用式子形式表示為:如果a=b,那么a±c=b±c

(2)等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項。

四、去括號法則

1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.

2.括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.

五、解方程的一般步驟

1.去分母(方程兩邊同乘各分母的最小公倍數(shù))

2.去括號(按去括號法則和分配律)

3.移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

4.合并(把方程化成a_=b(a≠0)形式)

5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解_=ba)。

六、用方程思想解決實(shí)際問題的一般步驟

1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系。

2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)。

3.列:根據(jù)題意列方程。

4.解:解出所列方程。

5.檢:檢驗(yàn)所求的解是否符合題意。

6.答:寫出答案(有單位要注明答案)。

七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系

1、和、差、倍、分問題:

(1)倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現(xiàn)。

(2)多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余……”來體現(xiàn)。

2、等積變形問題:

“等積變形”是以形狀改變而體積不變?yōu)榍疤?。常用等量關(guān)系為:

①形狀面積變了,周長沒變;

②原料體積=成品體積。

3、勞力調(diào)配問題:

這類問題要搞清人數(shù)的變化,常見題型有:

(1)既有調(diào)入又有調(diào)出。

(2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變。

(3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變。

4、數(shù)字問題

(1)要搞清楚數(shù)的表示方法:一個三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個位數(shù)字為c(其中a、b、c均為整數(shù),且1≤a≤9,0≤b≤9,0≤c≤9)則這個三位數(shù)表示為:100a+10b+c

(2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n—2表示;奇數(shù)用2n+1或2n—1表示。

5、工程問題:

工程問題中的三個量及其關(guān)系為:工作總量=工作效率×工作時間

6、行程問題:

(1)行程問題中的三個基本量及其關(guān)系:路程=速度×?xí)r間。

(2)基本類型有

①相遇問題;

②追及問題;常見的還有:相背而行;行船問題;環(huán)形跑道問題。

7、商品銷售問題

有關(guān)關(guān)系式:

商品利潤=商品售價—商品進(jìn)價=商品標(biāo)價×折扣率—商品進(jìn)價

商品利潤率=商品利潤/商品進(jìn)價

商品售價=商品標(biāo)價×折扣率

8、儲蓄問題

(1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率。利息的20%付利息稅

(2)利息=本金×利率×期數(shù)

本息和=本金+利息

利息稅=利息×稅率(20%)

【第11篇 七年級數(shù)學(xué)一元一次方程講解知識點(diǎn)總結(jié)

七年級數(shù)學(xué)一元一次方程講解知識點(diǎn)總結(jié)

1.等式:用=號連接而成的式子叫等式.

2.等式的性質(zhì):

等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;

等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.

3.方程:含未知數(shù)的等式,叫方程.

4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:方程的解就能代入!

5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.

6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的.系數(shù)不是零的整式方程是一元一次方程.

7.一元一次方程的標(biāo)準(zhǔn)形式:a_+b=0(_是未知數(shù),a、b是已知數(shù),且a0).

8.一元一次方程解法的一般步驟:

化簡方程----------分?jǐn)?shù)基本性質(zhì)

去分母----------同乘(不漏乘)最簡公分母

去括號----------注意符號變化

移項----------變號(留下靠前)

合并同類項--------合并后符號

系數(shù)化為1---------除前面

10.列一元一次方程解應(yīng)用題:

(1)讀題分析法:多用于和,差,倍,分問題

仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:大,小,多,少,是,共,合,為,完成,增加,減少,配套-----,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

(2)畫圖分析法:多用于行程問題

利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

11.列方程解應(yīng)用題的常用公式:

(1)行程問題:距離=速度時間

(2)工程問題:工作量=工效工時

工程問題常用等量關(guān)系:先做的+后做的=完成量

(3)順?biāo)嫠畣栴}:

順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;水流速度=(順?biāo)俣?逆水速度)2

順?biāo)嫠畣栴}常用等量關(guān)系:順?biāo)烦?逆水路程

(4)商品利潤問題:售價=定價 , ;

利潤問題常用等量關(guān)系:售價-進(jìn)價=利潤

【第12篇 數(shù)學(xué)5.2知識點(diǎn)總結(jié):一元一次方程

數(shù)學(xué)5.2知識點(diǎn)總結(jié):一元一次方程

成績的提高是同學(xué)們提高總體學(xué)習(xí)成績的重要途徑,大家一定要在平時的練習(xí)中不斷積累,小編為大家準(zhǔn)備了必備的初一上冊數(shù)學(xué)5.2知識點(diǎn)總結(jié):一元一次方程,希望同學(xué)們不斷取得進(jìn)步!

一、方程的有關(guān)概念

1.方程:含有未知數(shù)的等式就叫做方程.

2.一元一次方程:只含有一個未知數(shù)(元)_,未知數(shù)_的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如:1700+50_=1800,2(_+1.5_)=5等都是一元一次方程.

3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.

注:⑴方程的解和解方程是不同的概念,方程的解實(shí)質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程.⑵方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.

二、等式的性質(zhì)

等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.用式子形式表示為:如果a=b,那么a±c=b±c

(2)等式的性質(zhì)(2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

三、移項法則:把等式一邊的'某項變號后移到另一邊,叫做移項.

四、去括號法則

1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.

2.括號外的因數(shù)是負(fù)數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.

以上就是數(shù)學(xué)網(wǎng)為大家整理的必備的初一上冊數(shù)學(xué)5.2知識點(diǎn)總結(jié):一元一次方程,怎么樣,大家還滿意嗎?希望對大家的學(xué)習(xí)有所幫助,同時也祝大家學(xué)習(xí)進(jìn)步,考試順利!

【第13篇 人教版七年級上冊數(shù)學(xué)解一元一次方程知識點(diǎn)總結(jié)

1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

2.一元一次方程的標(biāo)準(zhǔn)形式:a_+b=0(_是未知數(shù),a、b是已知數(shù),且a≠0)。

3.條件:一元一次方程必須同時滿足4個條件:

(1)它是等式;

(2)分母中不含有未知數(shù);

(3)未知數(shù)次項為1;

(4)含未知數(shù)的項的系數(shù)不為0.

4.等式的性質(zhì):

等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減去同一個數(shù)或同一個整式,等式仍然成立。

等式的性質(zhì)二:等式兩邊同時擴(kuò)大或縮小相同的倍數(shù)(0除外),等式仍然成立。

等式的性質(zhì)三:等式兩邊同時乘方(或開方),等式仍然成立。

解方程都是依據(jù)等式的這三個性質(zhì)等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減同一個數(shù),等式仍然成立。

5.合并同類項

(1)依據(jù):乘法分配律

(2)把未知數(shù)相同且其次數(shù)也相同的相合并成一項;常數(shù)計算后合并成一項

(3)合并時次數(shù)不變,只是系數(shù)相加減。

6.移項

(1)含有未知數(shù)的項變號后都移到方程左邊,把不含未知數(shù)的項移到右邊。

(2)依據(jù):等式的性質(zhì)

(3)把方程一邊某項移到另一邊時,一定要變號。

7.一元一次方程解法的一般步驟:

使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

一般解法:

(1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù);

(2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號)

(3)移項:把含有未知數(shù)的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號

(4)合并同類項:把方程化成a_=b(a≠0)的形式;

(5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解_=b/a.

8.同解方程

如果兩個方程的解相同,那么這兩個方程叫做同解方程。

9.方程的同解原理:

(1)方程的兩邊都加或減同一個數(shù)或同一個等式所得的方程與原方程是同解方程。

(2)方程的兩邊同乘或同除同一個不為0的數(shù)所得的方程與原方程是同解方程。

【第14篇 七年級數(shù)學(xué)一元一次方程知識點(diǎn)總結(jié)

七年級數(shù)學(xué)一元一次方程知識點(diǎn)總結(jié)

2.1從算式到方程

方程是含有未知數(shù)的等式。

方程都只含有一個未知數(shù)(元)_,未知數(shù)_的指數(shù)都是1(次),這樣的方程叫做一元一次方程(linearequationwithoneunknown)。

解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的'值,這個值就是方程的解(solution)。

等式的性質(zhì):

1.等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。

2.等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。

2.2從古老的代數(shù)書說起——一元一次方程的討論(1)

把等式一邊的某項變號后移到另一邊,叫做移項。

【第15篇 初中數(shù)學(xué)一元一次方程的基礎(chǔ)知識點(diǎn)總結(jié)

初中數(shù)學(xué)一元一次方程的基礎(chǔ)知識點(diǎn)總結(jié)

據(jù)調(diào)查,“方程”一詞來源于中國古算術(shù)書《九章算術(shù)》,在19世紀(jì)以前,方程一直是代數(shù)的核心內(nèi)容。

一元一次方程

通過化簡,只含有一個未知數(shù),且含有未知數(shù)的最高次項的'次數(shù)是一的等式,叫一元一次方程。通常形式是a_+b=0(a,b為常數(shù),且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

一元指方程僅含有一個未知數(shù),一次指未知數(shù)的次數(shù)為1,且未知數(shù)的系數(shù)不為0。我們將a_+b=0(其中_是未知數(shù),a、b是已知數(shù),并且a≠0)叫一元一次方程的標(biāo)準(zhǔn)形式。

這里a是未知數(shù)的系數(shù),b是常數(shù),_的次數(shù)必須是1。即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數(shù);⑶未知數(shù)最高次項為1; ⑷含未知數(shù)的項的系數(shù)不為0。

步驟:去分母→去括號→移項→合并同類項→系數(shù)化為一。

在代數(shù)知識的入門學(xué)習(xí)中,我們就會接觸關(guān)于一元一次方程的知識要領(lǐng),其重要性是可見的。

【第16篇 初一年級上冊數(shù)學(xué)第三單元《一元一次方程》知識點(diǎn)總結(jié)

初一年級上冊數(shù)學(xué)第三單元《一元一次方程》知識點(diǎn)總結(jié)

1.等式與等量:用=號連接而成的式子叫等式.注意:等量就能代入!

2.等式的性質(zhì):

等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;

等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.

3.方程:含未知數(shù)的等式,叫方程.

4.方程的解:使等式左右兩邊相等的`未知數(shù)的值叫方程的解;注意:方程的解就能代入!

5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.

6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.

7.一元一次方程的標(biāo)準(zhǔn)形式:a_+b=0(_是未知數(shù),a、b是已知數(shù),且a0).

8.一元一次方程的最簡形式:a_=b(_是未知數(shù),a、b是已知數(shù),且a0).

9.一元一次方程解法的一般步驟:整理方程去分母去括號移項合并同類項系數(shù)化為1(檢驗(yàn)方程的解).

一元一次方程總結(jié)(十六篇)

1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)…
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

相關(guān)一元一次方程信息

  • 一元一次方程總結(jié)(十六篇)
  • 一元一次方程總結(jié)(十六篇)19人關(guān)注

    1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已 ...[更多]

總結(jié)范文熱門信息