- 目錄
-
第1篇高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié) 第2篇高二數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié) 第3篇2023高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié) 第4篇高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié) 第5篇2023高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié) 第6篇高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié):冪函數(shù)的性質(zhì)考點(diǎn) 第7篇高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié) 第8篇高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié) 第9篇高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié) 第10篇高三數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
【第1篇 高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)范例
一、集合有關(guān)概念
1. 集合的含義
2. 集合的中元素的三個(gè)特性:
(1) 元素的確定性,
(2) 元素的互異性,
(3) 元素的無(wú)序性,
3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
? 注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集) 記作:n
正整數(shù)集 n_或 n+ 整數(shù)集z 有理數(shù)集q 實(shí)數(shù)集r
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合的方法。{_?r| _-3>;2} ,{_| _-3>;2}
3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}
4) venn圖:
4、集合的分類:
(1) 有限集 含有有限個(gè)元素的集合
(2) 無(wú)限集 含有無(wú)限個(gè)元素的集合
(3) 空集 不含任何元素的集合 例:{_|_2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意: 有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。
反之: 集合a不包含于集合b,或集合b不包含集合a,記作a b或b a
2.“相等”關(guān)系:a=b (5≥5,且5≤5,則5=5)
實(shí)例:設(shè) a={_|_2-1=0} b={-1,1} “元素相同則兩集合相等”
即:① 任何一個(gè)集合是它本身的子集。a?a
②真子集:如果a?b,且a? b那就說(shuō)集合a是集合b的真子集,記作a b(或b a)
③如果 a?b, b?c ,那么 a?c
④ 如果a?b 同時(shí) b?a 那么a=b
3. 不含任何元素的集合叫做空集,記為φ
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
三、集合的運(yùn)算
運(yùn)算類型 交 集 并 集 補(bǔ) 集
定 義 由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.記作a b(讀作‘a(chǎn)交b’),即a b={_|_ a,且_ b}.
由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:a b(讀作‘a(chǎn)并b’),即a b ={_|_ a,或_ b}).
設(shè)s是一個(gè)集合,a是s的一個(gè)子集,由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)
更多資料請(qǐng)點(diǎn)擊》》http://class.hujiang.com/category/131181576619/p28_292
二、函數(shù)的有關(guān)概念
1.函數(shù)的概念:設(shè)a、b是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合a中的任意一個(gè)數(shù)_,在集合b中都有唯一確定的數(shù)f(_)和它對(duì)應(yīng),那么就稱f:a→b為從集合a到集合b的一個(gè)函數(shù).記作: y=f(_),_∈a.其中,_叫做自變量,_的取值范圍a叫做函數(shù)的定義域;與_的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(_)| _∈a }叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實(shí)數(shù)_的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對(duì)數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的._的值組成的集合.
(6)指數(shù)為零底不可以等于零,
(7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.
相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數(shù)圖象知識(shí)歸納
(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(_) , (_∈a)中的_為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)p(_,y)的集合c,叫做函數(shù) y=f(_),(_ ∈a)的圖象.c上每一點(diǎn)的坐標(biāo)(_,y)均滿足函數(shù)關(guān)系y=f(_),反過(guò)來(lái),以滿足y=f(_)的每一組有序?qū)崝?shù)對(duì)_、y為坐標(biāo)的點(diǎn)(_,y),均在c上 .
(2) 畫法
a、 描點(diǎn)法:
b、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對(duì)稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
(2)無(wú)窮區(qū)間
(3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)a、b是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合a中的任意一個(gè)元素_,在集合b中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:a b為從集合a到集合b的一個(gè)映射。記作f:a→b
6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補(bǔ)充:復(fù)合函數(shù)
如果y=f(u)(u∈m),u=g(_)(_∈a),則 y=f[g(_)]=f(_)(_∈a) 稱為f、g的復(fù)合函數(shù)。
二.函數(shù)的性質(zhì)
1.函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(_)的定義域?yàn)閕,如果對(duì)于定義域i內(nèi)的某個(gè)區(qū)間d內(nèi)的任意兩個(gè)自變量_1,_2,當(dāng)_1
如果對(duì)于區(qū)間d上的任意兩個(gè)自變量的值_1,_2,當(dāng)_1f(_2),那么就說(shuō)f(_)在這個(gè)區(qū)間上是減函數(shù).區(qū)間d稱為y=f(_)的單調(diào)減區(qū)間.
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
(2) 圖象的特點(diǎn)
如果函數(shù)y=f(_)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(_)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.
(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(a) 定義法:
○1 任取_1,_2∈d,且_1
○2 作差f(_1)-f(_2);
○3 變形(通常是因式分解和配方);
○4 定號(hào)(即判斷差f(_1)-f(_2)的正負(fù));
○5 下結(jié)論(指出函數(shù)f(_)在給定的區(qū)間d上的單調(diào)性).
(b)圖象法(從圖象上看升降)
(c)復(fù)合函數(shù)的單調(diào)性
復(fù)合函數(shù)f[g(_)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(_),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
8.函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù)
一般地,對(duì)于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=f(_),那么f(_)就叫做偶函數(shù).
(2).奇函數(shù)
一般地,對(duì)于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=—f(_),那么f(_)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
利用定義判斷函數(shù)奇偶性的步驟:
○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;
○2確定f(-_)與f(_)的關(guān)系;
○3作出相應(yīng)結(jié)論:若f(-_) = f(_) 或 f(-_)-f(_) = 0,則f(_)是偶函數(shù);若f(-_) =-f(_) 或 f(-_)+f(_) = 0,則f(_)是奇函數(shù).
(2)由 f(-_)±f(_)=0或f(_)/f(-_)=±1來(lái)判定;
(3)利用定理,或借助函數(shù)的圖象判定 .
9、函數(shù)的解析表達(dá)式
(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:
1) 湊配法
2) 待定系數(shù)法
3) 換元法
4) 消參法
10.函數(shù)最大(小)值(定義見課本p36頁(yè))
○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值
○2 利用圖象求函數(shù)的最大(小)值
○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:
如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(_)在_=b處有最大值f(b);
如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(_)在_=b處有最小值f(b);
【第2篇 高二數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征
1.2空間幾何體的三視圖和直觀圖
11三視圖:
正視圖:從前往后
側(cè)視圖:從左往右
俯視圖:從上往下
22畫三視圖的原則:
長(zhǎng)對(duì)齊、高對(duì)齊、寬相等
33直觀圖:斜二測(cè)畫法
44斜二測(cè)畫法的步驟:
(1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;
(2).平行于y軸的線長(zhǎng)度變半,平行于_,z軸的線長(zhǎng)度不變;
(3).畫法要寫好。
5用斜二測(cè)畫法畫出長(zhǎng)方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖
1.3空間幾何體的表面積與體積
(一)空間幾何體的表面積
1棱柱、棱錐的表面積:各個(gè)面面積之和
2圓柱的表面積3圓錐的表面積
4圓臺(tái)的表面積
5球的表面積
(二)空間幾何體的體積
1柱體的體積
2錐體的體積
3臺(tái)體的體積
4球體的體積
高二數(shù)學(xué)必修二知識(shí)點(diǎn):直線與平面的位置關(guān)系
2.1空間點(diǎn)、直線、平面之間的位置關(guān)系
2.1.1
1平面含義:平面是無(wú)限延展的
2平面的畫法及表示
(1)平面的畫法:水平放置的平面通常畫成一個(gè)平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(zhǎng)(如圖)
(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對(duì)的兩個(gè)頂點(diǎn)的大寫字母來(lái)表示,如平面ac、平面abcd等。
3三個(gè)公理:
(1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)
符號(hào)表示為
a∈l
b∈l=>lα
a∈α
b∈α
公理1作用:判斷直線是否在平面內(nèi)
(2)公理2:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面。
符號(hào)表示為:a、b、c三點(diǎn)不共線=>有且只有一個(gè)平面α,
使a∈α、b∈α、c∈α。
公理2作用:確定一個(gè)平面的依據(jù)。
(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線。
符號(hào)表示為:p∈α∩β=>α∩β=l,且p∈l
公理3作用:判定兩個(gè)平面是否相交的依據(jù)
2.1.2空間中直線與直線之間的位置關(guān)系
1空間的兩條直線有如下三種關(guān)系:
共面直線
相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);
平行直線:同一平面內(nèi),沒(méi)有公共點(diǎn);
異面直線:不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)。
2公理4:平行于同一條直線的兩條直線互相平行。
符號(hào)表示為:設(shè)a、b、c是三條直線
a∥b
c∥b
強(qiáng)調(diào):公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。
公理4作用:判斷空間兩條直線平行的依據(jù)。
3等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)
4注意點(diǎn):
①a'與b'所成的角的大小只由a、b的相互位置來(lái)確定,與o的選擇無(wú)關(guān),為了簡(jiǎn)便,點(diǎn)o一般取在兩直線中的一條上;
②兩條異面直線所成的角θ∈(0,);
③當(dāng)兩條異面直線所成的角是直角時(shí),我們就說(shuō)這兩條異面直線互相垂直,記作a⊥b;
④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;
⑤計(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。
2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關(guān)系
1、直線與平面有三種位置關(guān)系:
(1)直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)
(2)直線與平面相交——有且只有一個(gè)公共點(diǎn)
(3)直線在平面平行——沒(méi)有公共點(diǎn)
指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來(lái)表示
aαa∩α=aa∥α
2.2.直線、平面平行的判定及其性質(zhì)
2.2.1直線與平面平行的判定
1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。
簡(jiǎn)記為:線線平行,則線面平行。
符號(hào)表示:
aα
bβ=>a∥α
a∥b
2.2.2平面與平面平行的判定
1、兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。
符號(hào)表示:
aβ
bβ
a∩b=pβ∥α
a∥α
b∥α
2、判斷兩平面平行的方法有三種:
(1)用定義;
(2)判定定理;
(3)垂直于同一條直線的兩個(gè)平面平行。
2.2.3—2.2.4直線與平面、平面與平面平行的性質(zhì)
1、定理:一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與該直線平行。
簡(jiǎn)記為:線面平行則線線平行。
符號(hào)表示:
a∥α
aβa∥b
α∩β=b
作用:利用該定理可解決直線間的平行問(wèn)題。
2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。
符號(hào)表示:
α∥β
α∩γ=aa∥b
β∩γ=b
作用:可以由平面與平面平行得出直線與直線平行
2.3直線、平面垂直的判定及其性質(zhì)
2.3.1直線與平面垂直的判定
1、定義
如果直線l與平面α內(nèi)的任意一條直線都垂直,我們就說(shuō)直線l與平面α互相垂直,記作l⊥α,直線l叫做平面α的垂線,平面α叫做直線l的垂面。直線與平面垂直時(shí),它們公共點(diǎn)p叫做垂足。
2、判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。
注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;
b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。
2.3.2平面與平面垂直的判定
1、二面角的概念:表示從空間一直線出發(fā)的兩個(gè)半平面所組成的圖形
2、二面角的記法:二面角α-l-β或α-ab-β
3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直。
2.3.3—2.3.4直線與平面、平面與平面垂直的性質(zhì)
1、定理:垂直于同一個(gè)平面的兩條直線平行。
2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。
【第3篇 2023高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
第一章 集合與函數(shù)概念
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由happy的字母組成的集合{h,a,p,y}
(3)元素的無(wú)序性: 如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:_ kb 1.c om
非負(fù)整數(shù)集(即自然數(shù)集) 記作:n
正整數(shù)集 :n_或 n+
整數(shù)集: z
有理數(shù)集: q
實(shí)數(shù)集: r
1)列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合{_?r|_-3>2} ,{_|_-3>2}
3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}
4) venn圖:
4、集合的分類:
(1)有限集 含有有限個(gè)元素的集合
(2)無(wú)限集 含有無(wú)限個(gè)元素的集合
(3)空集 不含任何元素的集合 例:{_|_2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意: 有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。
反之: 集合a不包含于集合b,或集合b不包含集合a,記作a b或b a
2.“相等”關(guān)系:a=b (5≥5,且5≤5,則5=5)
實(shí)例:設(shè) a={_|_2-1=0} b={-1,1} “元素相同則兩集合相等”
即:① 任何一個(gè)集合是它本身的子集。a?a
② 真子集:如果a?b,且a? b那就說(shuō)集合a是集合b的真子集,記作a b(或b a)
③ 如果 a?b, b?c ,那么 a?c
④ 如果a?b 同時(shí) b?a 那么a=b
3. 不含任何元素的集合叫做空集,記為φ
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
4.子集個(gè)數(shù):
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
三、集合的運(yùn)算
運(yùn)算類型 交 集 并 集 補(bǔ) 集
定 義 由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.記作a b(讀作‘a(chǎn)交b’),即a b={_|_ a,且_ b}.
由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:a b(讀作‘a(chǎn)并b’),即a b ={_|_ a,或_ b}).
設(shè)s是一個(gè)集合,a是s的一個(gè)子集,由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)
記作 ,即
csa=
韋
恩
圖
示
性
質(zhì) a a=a
a φ=φ
a b=b a
a b a
a b b
a a=a
a φ=a
a b=b a
a b a
a b b
(cua) (cub)
= cu (a b)
(cua) (cub)
= cu(a b)
a (cua)=u
a (cua)= φ.
二、函數(shù)的有關(guān)概念
1.函數(shù)的概念
設(shè)a、b是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合a中的任意一個(gè)數(shù)_,在集合b中都有確定的數(shù)f(_)和它對(duì)應(yīng),那么就稱f:a→b為從集合a到集合b的一個(gè)函數(shù).記作: y=f(_),_∈a.其中,_叫做自變量,_的取值范圍a叫做函數(shù)的定義域;與_的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(_)| _∈a }叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實(shí)數(shù)_的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對(duì)數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的_的值組成的集合.
(6)指數(shù)為零底不可以等于零,
(7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.
相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));
②定義域一致 (兩點(diǎn)必須同時(shí)具備)
2.值域 : 先考慮其定義域
(1)觀察法 (2)配方法 (3)代換法
3. 函數(shù)圖象知識(shí)歸納
(1)定義:
在平面直角坐標(biāo)系中,以函數(shù) y=f(_) , (_∈a)中的_為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)p(_,y)的集合c,叫做函數(shù) y=f(_),(_ ∈a)的圖象.c上每一點(diǎn)的坐標(biāo)(_,y)均滿足函數(shù)關(guān)系y=f(_),反過(guò)來(lái),以滿足y=f(_)的每一組有序?qū)崝?shù)對(duì)_、y為坐標(biāo)的點(diǎn)(_,y),均在c上 .
(2) 畫法
1.描點(diǎn)法: 2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對(duì)稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間 (2)無(wú)窮區(qū)間 (3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)a、b是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合a中的任意一個(gè)元素_,在集合b中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:a b為從集合a到集合b的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):a(原象) b(象)”
對(duì)于映射f:a→b來(lái)說(shuō),則應(yīng)滿足:
(1)集合a中的每一個(gè)元素,在集合b中都有象,并且象是的;
(2)集合a中不同的元素,在集合b中對(duì)應(yīng)的象可以是同一個(gè);
(3)不要求集合b中的每一個(gè)元素在集合a中都有原象。
6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補(bǔ)充:復(fù)合函數(shù)
如果y=f(u)(u∈m),u=g(_)(_∈a),則 y=f[g(_)]=f(_)(_∈a) 稱為f、g的復(fù)合函數(shù)。
二.函數(shù)的性質(zhì)
1.函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(_)的定義域?yàn)閕,如果對(duì)于定義域i內(nèi)的某個(gè)區(qū)間d內(nèi)的任意兩個(gè)自變量_1,_2,當(dāng)_1
如果對(duì)于區(qū)間d上的任意兩個(gè)自變量的值_1,_2,當(dāng)_1
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
(2) 圖象的特點(diǎn)
如果函數(shù)y=f(_)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(_)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.
(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(a) 定義法:
(1)任取_1,_2∈d,且_1
(2)作差f(_1)-f(_2);或者做商
(3)變形(通常是因式分解和配方);
(4)定號(hào)(即判斷差f(_1)-f(_2)的正負(fù));
(5)下結(jié)論(指出函數(shù)f(_)在給定的區(qū)間d上的單調(diào)性).
(b)圖象法(從圖象上看升降)
(c)復(fù)合函數(shù)的單調(diào)性
復(fù)合函數(shù)f[g(_)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(_),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
8.函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù):一般地,對(duì)于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=f(_),那么f(_)就叫做偶函數(shù).
(2)奇函數(shù):一般地,對(duì)于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=—f(_),那么f(_)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
9.利用定義判斷函數(shù)奇偶性的步驟:
○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;
○2確定f(-_)與f(_)的關(guān)系;
○3作出相應(yīng)結(jié)論:若f(-_) = f(_) 或 f(-_)-f(_) = 0,則f(_)是偶函數(shù);若f(-_) =-f(_) 或 f(-_)+f(_) = 0,則f(_)是奇函數(shù).
注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù).若對(duì)稱,(1)再根據(jù)定義判定; (2)由 f(-_)±f(_)=0或f(_)/f(-_)=±1來(lái)判定; (3)利用定理,或借助函數(shù)的圖象判定 .
10、函數(shù)的解析表達(dá)式
(1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法
11.函數(shù)(?。┲?/p>
○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(?。┲?/p>
○2 利用圖象求函數(shù)的(小)值
○3 利用函數(shù)單調(diào)性的判斷函數(shù)的(?。┲担?/p>
如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(_)在_=b處有值f(b);
如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(_)在_=b處有最小值f(b);
第三章 基本初等函數(shù)
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ _.
負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作 。
當(dāng) 是奇數(shù)時(shí), ,當(dāng) 是偶數(shù)時(shí),
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
,
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(1) · ;
(2) ;
(3) .
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù) 叫做指數(shù)函數(shù),其中_是自變量,函數(shù)的定義域?yàn)閞.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
a>1 0<1
定義域 r 定義域 r
值域y>0 值域y>0
在r上單調(diào)遞增 在r上單調(diào)遞減
非奇非偶函數(shù) 非奇非偶函數(shù)
函數(shù)圖象都過(guò)定點(diǎn)(0,1) 函數(shù)圖象都過(guò)定點(diǎn)(0,1)
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;
(3)對(duì)于指數(shù)函數(shù) ,總有 ;
二、對(duì)數(shù)函數(shù)
(一)對(duì)數(shù)
1.對(duì)數(shù)的概念:
一般地,如果 ,那么數(shù) 叫做以 為底 的對(duì)數(shù),記作: ( — 底數(shù), — 真數(shù), — 對(duì)數(shù)式)
說(shuō)明:○1 注意底數(shù)的限制 ,且 ;
○2 ;
○3 注意對(duì)數(shù)的書寫格式.
兩個(gè)重要對(duì)數(shù):
○1 常用對(duì)數(shù):以10為底的對(duì)數(shù) ;
○2 自然對(duì)數(shù):以無(wú)理數(shù) 為底的對(duì)數(shù)的對(duì)數(shù) .
指數(shù)式與對(duì)數(shù)式的互化
冪值 真數(shù)
= n = b
底數(shù)
指數(shù) 對(duì)數(shù)
(二)對(duì)數(shù)的運(yùn)算性質(zhì)
如果 ,且 , , ,那么:
○1 · + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導(dǎo)下面的結(jié)論:(1) ;(2) .
(3)、重要的公式 ①、負(fù)數(shù)與零沒(méi)有對(duì)數(shù); ②、 , ③、對(duì)數(shù)恒等式
(二)對(duì)數(shù)函數(shù)
1、對(duì)數(shù)函數(shù)的概念:函數(shù) ,且 叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).
注意:○1 對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù).
○2 對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制: ,且 .
2、對(duì)數(shù)函數(shù)的性質(zhì):
a>1 0<1
定義域_>0 定義域_>0
值域?yàn)閞 值域?yàn)閞
在r上遞增 在r上遞減
函數(shù)圖象都過(guò)定點(diǎn)(1,0) 函數(shù)圖象都過(guò)定點(diǎn)(1,0)
(三)冪函數(shù)
1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);
(2) 時(shí),冪函數(shù)的圖象通過(guò)原點(diǎn),并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時(shí),冪函數(shù)的圖象下凸;當(dāng) 時(shí),冪函數(shù)的圖象上凸;
(3) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無(wú)限地逼近 軸正半軸,當(dāng) 趨于 時(shí),圖象在 軸上方無(wú)限地逼近 軸正半軸.
第四章 函數(shù)的應(yīng)用
一、方程的根與函數(shù)的零點(diǎn)
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù) ,把使 成立的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù) 的零點(diǎn)就是方程 實(shí)數(shù)根,亦即函數(shù) 的圖象與 軸交點(diǎn)的橫坐標(biāo)。
即:方程 有實(shí)數(shù)根 函數(shù) 的圖象與 軸有交點(diǎn) 函數(shù) 有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
○1 (代數(shù)法)求方程 的實(shí)數(shù)根;
○2 (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù) .
(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
(2)△=0,方程 有兩相等實(shí)根,二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
(3)△<0,方程 無(wú)實(shí)根,二次函數(shù)的圖象與 軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).
5.函數(shù)的模型
【第4篇 高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
導(dǎo)語(yǔ)高三學(xué)生很快就會(huì)面臨繼續(xù)學(xué)業(yè)或事業(yè)的選擇。面對(duì)重要的人生選擇,是否考慮清楚了?這對(duì)于沒(méi)有社會(huì)經(jīng)驗(yàn)的學(xué)生來(lái)說(shuō),無(wú)疑是個(gè)困難的想選擇。如何度過(guò)這重要又緊張的一年,我們可以從提高學(xué)習(xí)效率來(lái)著手!高三頻道為各位同學(xué)整理了《高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)》,希望你努力學(xué)習(xí),圓金色六月夢(mèng)!
1.高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
兩個(gè)平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”;
(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;
(3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;
(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;
(5)夾在兩個(gè)平行平面間的平行線段相等;
(6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
2.高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
1.不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.
2.比較兩個(gè)實(shí)數(shù)的大小
兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,則有>1?;=1?;<1?.
概括為:作差法,作商法,中間量法等.
3.不等式的性質(zhì)
(1)對(duì)稱性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈n,n≥2);
(6)可開方:a>b>0?(n∈n,n≥2).
復(fù)習(xí)指導(dǎo)
1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.
2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.
3.“兩條常用性質(zhì)”
(1)倒數(shù)性質(zhì):
①a>b,ab>0?<;
②a<0
③a>b>0,0;
④0
(2)若a>b>0,m>0,則
①真分?jǐn)?shù)的性質(zhì):<;>(b-m>0);
②假分?jǐn)?shù)的性質(zhì):>;<(b-m>0).
4.高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
1、連續(xù)、間斷點(diǎn)以及間斷點(diǎn)的分類:判斷間斷點(diǎn)類型的基礎(chǔ)是求函數(shù)在間斷點(diǎn)處的左右極限;
2、可導(dǎo)和可微,分段函數(shù)在分段點(diǎn)處的導(dǎo)數(shù)或可導(dǎo)性,一律通過(guò)導(dǎo)數(shù)定義直接計(jì)算或檢驗(yàn)存在的定義是極限存在;
3、漸近線,(垂直、水平或斜漸近線);
4、多元函數(shù)積分學(xué),二重極限的討論計(jì)算難度較大,??疾樽C明極限不存在.
下面我們重點(diǎn)講一下數(shù)列極限的典型方法.
重要題型及點(diǎn)撥
1.求數(shù)列極限
求數(shù)列極限可以歸納為以下三種形式.
★抽象數(shù)列求極限
這類題一般以選擇題的形式出現(xiàn),因此可以通過(guò)舉反例來(lái)排除.此外,也可以按照定義、基本性質(zhì)及運(yùn)算法則直接驗(yàn)證.
★求具體數(shù)列的極限,可以參考以下幾種方法:
a.利用單調(diào)有界必收斂準(zhǔn)則求數(shù)列極限.
首先,用數(shù)學(xué)歸納法或不等式的放縮法判斷數(shù)列的單調(diào)性和有界性,進(jìn)而確定極限存在性;其次,通過(guò)遞推關(guān)系中取極限,解方程,從而得到數(shù)列的極限值.
b.利用函數(shù)極限求數(shù)列極限
如果數(shù)列極限能看成某函數(shù)極限的特例,形如,則利用函數(shù)極限和數(shù)列極限的關(guān)系轉(zhuǎn)化為求函數(shù)極限,此時(shí)再用洛必達(dá)法則求解.
★求項(xiàng)和或項(xiàng)積數(shù)列的極限,主要有以下幾種方法:
a.利用特殊級(jí)數(shù)求和法
如果所求的項(xiàng)和式極限中通項(xiàng)可以通過(guò)錯(cuò)位相消或可以轉(zhuǎn)化為極限已知的一些形式,那么通過(guò)整理可以直接得出極限結(jié)果.
b.利用冪級(jí)數(shù)求和法
若可以找到這個(gè)級(jí)數(shù)所對(duì)應(yīng)的冪級(jí)數(shù),則可以利用冪級(jí)數(shù)函數(shù)的方法把它所對(duì)應(yīng)的和函數(shù)求出,再根據(jù)這個(gè)極限的形式代入相應(yīng)的變量求出函數(shù)值.
c.利用定積分定義求極限
若數(shù)列每一項(xiàng)都可以提出一個(gè)因子,剩余的項(xiàng)可用一個(gè)通項(xiàng)表示,則可以考慮用定積分定義求解數(shù)列極限.
d.利用夾逼定理求極限
若數(shù)列每一項(xiàng)都可以提出一個(gè)因子,剩余的項(xiàng)不能用一個(gè)通項(xiàng)表示,但是其余項(xiàng)是按遞增或遞減排列的,則可以考慮用夾逼定理求解.
e.求項(xiàng)數(shù)列的積的極限,一般先取對(duì)數(shù)化為項(xiàng)和的形式,然后利用求解項(xiàng)和數(shù)列極限的方法進(jìn)行計(jì)算.
5.高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
一、定義與定義式:
自變量_和因變量y有如下關(guān)系:
y=k_+b
則此時(shí)稱y是_的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是_的正比例函數(shù)。
即:y=k_(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對(duì)應(yīng)的_的變化值成正比例,比值為k
即:y=k_+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2.當(dāng)_=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過(guò)如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與_軸和y軸的交點(diǎn))
2.性質(zhì):
(1)在一次函數(shù)上的任意一點(diǎn)p(_,y),都滿足等式:y=k_+b。
(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與_軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
6.高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
(1)直線的傾斜角
定義:_軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與_軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過(guò)兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):
(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;
(2)k與p1、p2的順序無(wú)關(guān);
(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
【第5篇 2023高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
高一數(shù)學(xué)集合有關(guān)概念
集合的含義
集合的中元素的三個(gè)特性:
元素的確定性如:世界上的山
元素的互異性如:由happy的字母組成的集合{h,a,p,y}
元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:n
正整數(shù)集n_或n+整數(shù)集z有理數(shù)集q實(shí)數(shù)集r
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合的方法。{_(r|_-3>2},{_|_-3>2}
語(yǔ)言描述法:例:{不是直角三角形的三角形}
venn圖:
4、集合的分類:
有限集含有有限個(gè)元素的集合
無(wú)限集含有無(wú)限個(gè)元素的集合
空集不含任何元素的集合例:{_|_2=-5}
高一數(shù)學(xué)集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。
反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba
2.“相等”關(guān)系:a=b(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)a={_|_2-1=0}b={-1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。a(a
②真子集:如果a(b,且a(b那就說(shuō)集合a是集合b的真子集,記作ab(或ba)
③如果a(b,b(c,那么a(c
④如果a(b同時(shí)b(a那么a=b
3.不含任何元素的集合叫做空集,記為φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
高一數(shù)學(xué)考試命題趨勢(shì)
1.函數(shù)知識(shí):基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問(wèn)題;以向量知識(shí)為背景的函數(shù)問(wèn)題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過(guò)程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。
2.向量知識(shí):向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問(wèn)題。
3.不等式知識(shí):突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問(wèn)題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來(lái),考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起。考查學(xué)生的等價(jià)轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問(wèn)題、解決問(wèn)題的能力。
4.立體幾何知識(shí):2023年已經(jīng)變得簡(jiǎn)單,2023年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問(wèn)題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問(wèn)題,都是重點(diǎn)考查內(nèi)容。
5.解析幾何知識(shí):小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。
6.導(dǎo)數(shù)知識(shí):導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。
7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點(diǎn),理科13,文科14題。
【第6篇 高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié):冪函數(shù)的性質(zhì)考點(diǎn)
高一數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié):冪函數(shù)的性質(zhì)考點(diǎn)
定義:
形如y=_^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞浚笖?shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:
如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則_肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則_不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)_為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:
在_大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在_小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則_^(p/q)=q次根號(hào)(_的p次方),如果q是奇數(shù),函數(shù)的定義域是r,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則_=1/(_^k),顯然_≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞)。因此可以看到_所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于_>;0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于_<;0和_>;0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對(duì)于_為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:
如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
【第7篇 高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
導(dǎo)語(yǔ)高一階段,是打基礎(chǔ)階段,是將來(lái)決戰(zhàn)高考取勝的關(guān)鍵階段,今早進(jìn)入角色,安排好自己學(xué)習(xí)和生活,會(huì)起到事半功倍的效果。以下是為你整理的《高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)》,學(xué)習(xí)路上,為你加油!
1.高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
1.函數(shù)知識(shí):基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問(wèn)題;以向量知識(shí)為背景的函數(shù)問(wèn)題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過(guò)程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。
2.向量知識(shí):向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問(wèn)題。
3.不等式知識(shí):突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問(wèn)題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來(lái),考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起。考查學(xué)生的等價(jià)轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問(wèn)題、解決問(wèn)題的能力。
4.立體幾何知識(shí):2023年已經(jīng)變得簡(jiǎn)單,2023年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問(wèn)題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問(wèn)題,都是重點(diǎn)考查內(nèi)容。
5.解析幾何知識(shí):小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。
6.導(dǎo)數(shù)知識(shí):導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。
2.高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicale_ponent),叫做被開方數(shù)(radicand)。
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
2、分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。
3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(e_ponential),其中_是自變量,函數(shù)的定義域?yàn)閞。
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。
2、指數(shù)函數(shù)的圖象和性質(zhì)
3.高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
1.函數(shù)的奇偶性。
(1)若f(_)是偶函數(shù),那么f(_)=f(-_)。
(2)若f(_)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù))。
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(_)±f(-_)=0或(f(_)≠0)。
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性。
(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性。
2.復(fù)合函數(shù)的有關(guān)問(wèn)題。
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(_)]的定義域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定義域?yàn)閇a,b],求f(_)的定義域,相當(dāng)于_∈[a,b]時(shí),求g(_)的值域(即f(_)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定。
3.函數(shù)圖像(或方程曲線的對(duì)稱性)。
(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上。
(2)證明圖像c1與c2的對(duì)稱性,即證明c1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在c2上,反之亦然。
(3)曲線c1:f(_,y)=0,關(guān)于y=_+a(y=-_+a)的對(duì)稱曲線c2的方程為f(y-a,_+a)=0(或f(-y+a,-_+a)=0)。
(4)曲線c1:f(_,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線c2方程為:f(2a-_,2b-y)=0。
(5)若函數(shù)y=f(_)對(duì)_∈r時(shí),f(a+_)=f(a-_)恒成立,則y=f(_)圖像關(guān)于直線_=a對(duì)稱。
4.函數(shù)的周期性。
(1)y=f(_)對(duì)_∈r時(shí),f(_+a)=f(_-a)或f(_-2a)=f(_)(a>0)恒成立,則y=f(_)是周期為2a的周期函數(shù)。
(2)若y=f(_)是偶函數(shù),其圖像又關(guān)于直線_=a對(duì)稱,則f(_)是周期為2︱a︱的周期函數(shù)。
(3)若y=f(_)奇函數(shù),其圖像又關(guān)于直線_=a對(duì)稱,則f(_)是周期為4︱a︱的周期函數(shù)。
(4)若y=f(_)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(_)是周期為2的周期函數(shù)。
5.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn)。
(1)a中元素必須都有象且。
(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象。
6.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
7.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論。
(1)定義域上的單調(diào)函數(shù)必有反函數(shù)。
(2)奇函數(shù)的反函數(shù)也是奇函數(shù)。
(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù)。
(4)周期函數(shù)不存在反函數(shù)。
(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性。
(6)y=f(_)與y=f-1(_)互為反函數(shù),設(shè)f(_)的定義域?yàn)閍,值域?yàn)閎,則有f[f--1(_)]=_(_∈b),f--1[f(_)]=_(_∈a)。
8.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合。
二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系。
9.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問(wèn)題。
10.恒成立問(wèn)題的處理方法。
(1)分離參數(shù)法。
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。
4.高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
1.“包含”關(guān)系—子集
注意:有兩種可能(1)a是b的一部分;(2)a與b是同一集合。
反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba
2.“相等”關(guān)系:a=b(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)a={_|_2-1=0}b={-1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。a(a
②真子集:如果a(b,且a(b那就說(shuō)集合a是集合b的真子集,記作ab(或ba)
③如果a(b,b(c,那么a(c
④如果a(b同時(shí)b(a那么a=b
3.不含任何元素的集合叫做空集,記為φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
5.高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πrr+2πrh體積:πr2h(r為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πr2+πr[(h2+r2)的]體積:πr2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長(zhǎng),s=6a2,v=a3
4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高s=2(ab+ac+bc)v=abc
5、棱柱s-h-高v=sh
6、棱錐s-h-高v=sh/3
7、s1和s2-上、下h-高v=h[s1+s2+(s1s2)^1/2]/3
8、s1-上底面積,s2-下底面積,s0-中h-高,v=h(s1+s2+4s0)/6
9、圓柱r-底半徑,h-高,c—底面周長(zhǎng)s底—底面積,s側(cè)—,s表—表面積c=2πrs底=πr2,s側(cè)=ch,s表=ch+2s底,v=s底h=πr2h
10、空心圓柱r-外圓半徑,r-內(nèi)圓半徑h-高v=πh(r^2-r^2)
11、r-底半徑h-高v=πr^2h/3
12、r-上底半徑,r-下底半徑,h-高v=πh(r2+rr+r2)/313、球r-半徑d-直徑v=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑v=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高v=πh[3(r12+r22)+h2]/6
16、圓環(huán)體r-環(huán)體半徑d-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑v=2π2rr2=π2dd2/4
17、桶狀體d-桶腹直徑d-桶底直徑h-桶高v=πh(2d2+d2)/12,(母線是圓弧形,圓心是桶的中心)v=πh(2d2+dd+3d2/4)/15(母線是拋物線形)
【第8篇 高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
一、直線與方程
(1)直線的傾斜角
定義:_軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與_軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。當(dāng) 時(shí), 。當(dāng) 時(shí), ;當(dāng) 時(shí), 不存在。
②過(guò)兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):(1)當(dāng) 時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;
(2)k與p1、p2的順序無(wú)關(guān);
(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
(3)直線方程
①點(diǎn)斜式: 直線斜率k,且過(guò)點(diǎn)
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于_1,所以它的方程是_=_1。
②斜截式: ,直線斜率為k,直線在y軸上的截距為b
③兩點(diǎn)式: ( )直線兩點(diǎn) ,
④截矩式: 其中直線 與 軸交于點(diǎn) ,與 軸交于點(diǎn) ,即 與 軸、 軸的截距分別為 。
⑤一般式: (a,b不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行于_軸的直線: (b為常數(shù)); 平行于y軸的直線: (a為常數(shù));
(4)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線 ( 是不全為0的常數(shù))的直線系: (c為常數(shù))
(二)過(guò)定點(diǎn)的直線系
(?)斜率為k的直線系: ,直線過(guò)定點(diǎn) ;
(?)過(guò)兩條直線 , 的交點(diǎn)的直線系方程為 ( 為參數(shù)),其中直線 不在直線系中。
(5)兩直線平行與垂直
當(dāng) , 時(shí), ;
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。
(6)兩條直線的交點(diǎn)
相交
交點(diǎn)坐標(biāo)即方程組的一組解。方程組無(wú)解 ; 方程組有無(wú)數(shù)解 與 重合
(7)兩點(diǎn)間距離公式:設(shè) 是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則
(8)點(diǎn)到直線距離公式:一點(diǎn) 到直線 的距離
(9)兩平行直線距離公式:在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。
二、圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。
2、圓的方程
(1)標(biāo)準(zhǔn)方程 ,圓心 ,半徑為r;
(2)一般方程
當(dāng) 時(shí),方程表示圓,此時(shí)圓心為, 半徑為
當(dāng) 時(shí),表示一個(gè)點(diǎn); 當(dāng) 時(shí),方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,
若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出d,e,f;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:
(1)設(shè)直線 ,圓 圓心 到l的距離為 則有
(2)設(shè)直線 ,圓 ,先將方程聯(lián)立消元,得到一個(gè)一元二次方程之后,令其中的判別式為 ,則有 ; ;
注:如圓心的位置在原點(diǎn),可使用公式 去解直線與圓相切的問(wèn)題,其中 表示切點(diǎn)坐標(biāo),r表示半徑。
(3)過(guò)圓上一點(diǎn)的切線方程:
①圓_2+y2=r2,圓上一點(diǎn)為(_0,y0),則過(guò)此點(diǎn)的切線方程為 (課本命題).
②圓(_-a)2+(y-b)2=r2,圓上一點(diǎn)為(_0,y0),則過(guò)此點(diǎn)的切線方程為(_0-a)(_-a)+(y0-b)(y-b)= r2 (課本命題的推廣).
4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
設(shè)圓 ,
兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。
當(dāng) 時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng) 時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng) 時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng) 時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;
當(dāng) 時(shí),兩圓內(nèi)含; 當(dāng) 時(shí),為同心圓。
三、立體幾何初步
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1) 棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱 或用對(duì)角線的端點(diǎn)字母,如五棱柱
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)
幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。
(6)圓臺(tái):
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測(cè)畫法
斜二測(cè)畫法特點(diǎn):①原來(lái)與_軸平行的線段仍然與_平行且長(zhǎng)度不變;
②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
4、柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高, 為斜高,l為母線)
(3)柱體、錐體、臺(tái)體的體積公式
(4)球體的表面積和體積公式:v = ; s =
5、空間點(diǎn)、直線、平面的位置關(guān)系
(1)平面
① 平面的概念: a.描述性說(shuō)明; b.平面是無(wú)限伸展的;
② 平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個(gè)銳角內(nèi));也可以用兩個(gè)相對(duì)頂點(diǎn)的字母來(lái)表示,如平面bc。
③ 點(diǎn)與平面的關(guān)系:點(diǎn)a在平面 內(nèi),記作 ;點(diǎn) 不在平面 內(nèi),記作
點(diǎn)與直線的關(guān)系:點(diǎn)a的直線l上,記作:a∈l; 點(diǎn)a在直線l外,記作a l;
直線與平面的關(guān)系:直線l在平面α內(nèi),記作l α;直線l不在平面α內(nèi),記作l α。
(2)公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。(即直線在平面內(nèi),或者平面經(jīng)過(guò)直線)
應(yīng)用:檢驗(yàn)桌面是否平; 判斷直線是否在平面內(nèi) 。 用符號(hào)語(yǔ)言表示公理1:
(3)公理2:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理2及其推論作用:①它是空間內(nèi)確定平面的依據(jù) ②它是證明平面重合的依據(jù)
(4)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線
符號(hào):平面α和β相交,交線是a,記作α∩β=a。 符號(hào)語(yǔ)言:
公理3的作用:①它是判定兩個(gè)平面相交的方法。
②它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。
③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。
(5)公理4:平行于同一條直線的兩條直線互相平行
(6)空間直線與直線之間的位置關(guān)系
① 異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線
② 異面直線性質(zhì):既不平行,又不相交。
③ 異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線
④ 異面直線所成角:直線a、b是異面直線,經(jīng)過(guò)空間任意一點(diǎn)o,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。
說(shuō)明:(1)判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理
(2)在異面直線所成角定義中,空間一點(diǎn)o是任取的,而和點(diǎn)o的位置無(wú)關(guān)。
(3)求異面直線所成角步驟:
a、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。
b、證明作出的'角即為所求角
c、利用三角形來(lái)求角
(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。
(8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).
三種位置關(guān)系的符號(hào)表示:a α a∩α=a a∥α
(9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α∥β 相交——有一條公共直線。α∩β=b
6、空間中的平行問(wèn)題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。 線線平行 線面平行
線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
線面平行 線線平行
(2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理(1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行(線面平行→面面平行),
(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。(線線平行→面面平行),
(3)垂直于同一條直線的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)
(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問(wèn)題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。
③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。
(2)垂直關(guān)系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。
性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。
8、空間角問(wèn)題
(1)直線與直線所成的角
①兩平行直線所成的角:規(guī)定為 。
②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過(guò)空間任意一點(diǎn)o,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規(guī)定為 。
②平面的垂線與平面所成的角:規(guī)定為 。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,
解題時(shí),注意挖掘題設(shè)中兩個(gè)信息:(1)斜線上一點(diǎn)到面的垂線;(2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角
9、空間直角坐標(biāo)系
(1)定義:如圖, 是單位正方體.以a為原點(diǎn),分別以od,o ,ob的方向?yàn)檎较颍?/p>
建立三條數(shù)軸 。這時(shí)建立了一個(gè)空間直角坐標(biāo)系o_yz.
1)o叫做坐標(biāo)原點(diǎn) 2)_ 軸,y軸,z軸叫做坐標(biāo)軸. 3)過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)面。
(2)右手表示法: 令右手大拇指、食指和中指相互垂直時(shí),可能形成的位置。大拇指指向?yàn)開軸正方向,食指指向?yàn)閥軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。
(3)任意點(diǎn)坐標(biāo)表示:空間一點(diǎn)m的坐標(biāo)可以用有序?qū)崝?shù)組 來(lái)表示,有序?qū)崝?shù)組 叫做點(diǎn)m在此空間直角坐標(biāo)系中的坐標(biāo),記作 (_叫做點(diǎn)m的橫坐標(biāo),y叫做點(diǎn)m的縱坐標(biāo),z叫做點(diǎn)m的豎坐標(biāo))
總結(jié)2013年已經(jīng)到來(lái),小編在此特意收集了有關(guān)此頻道的文章供讀者閱讀。
更多頻道:
《3.1 隨機(jī)事件的概率(2)》測(cè)試題
一、選擇題
1.若事件a發(fā)生的概率為p,則p的取值范圍是( ).
a. b. c. d.
考查目的:考查概率的重要性質(zhì),即任何事件的概率取值范圍是0≤p(a)≤1.
答案:d.
解析:由于事件的頻數(shù)總是小于或等于試驗(yàn)的次數(shù),所以頻率在0~1之間,從而任何事件的概率在0~1之間,在每次實(shí)驗(yàn)中,必然事件一定發(fā)生,因此它的頻率是1,從而必然事件的概率為1. 在每次實(shí)驗(yàn)中,不可能事件一定不發(fā)生,因此它的頻率是0.
2.從某班學(xué)生中任意找出一人,如果該同學(xué)的身高小于160cm的概率為0.2,該同學(xué)的身高在[160,175]的概率為0.5,那么該同學(xué)的身高超過(guò)175cm的概率為( ).
a.0.2 b.0.3 c.0.7 d.0.8
考查目的:考查事件的并(或稱事件的和)、對(duì)立事件的概念及概率加法公式的理解和掌握情況.
答案:b.
解析:因?yàn)楸厝皇录l(fā)生的概率是1,所以該同學(xué)的身高超過(guò)175cm的概率為1-0.2-0.5=0.3.
3.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi)任取2個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是( ).
a.至少有1個(gè)白球,都是紅球 b.至少有1個(gè)白球,至多有1個(gè)紅球
c.恰有1個(gè)白球,恰有2個(gè)白球 d.至多有1個(gè)白球,都是紅球
考查目的:考查互斥事件、對(duì)立事件的概念、意義及其區(qū)別和聯(lián)系.
答案:c.
解析:互斥事件:在同一試驗(yàn)中不可能同時(shí)發(fā)生的兩個(gè)事件叫互斥事件,而對(duì)立事件是建立在互斥事件的基礎(chǔ)上,兩個(gè)事件中一個(gè)不發(fā)生,另一個(gè)必發(fā)生. 用a,b,c,d分別表示2個(gè)紅球,2個(gè)黑球,任取2球,共有6種可能的結(jié)果,分別是:ab;ac;ad;bc;bd;cd.選擇項(xiàng) c中恰有1個(gè)白球,包括ac;ad;bc;bd,恰有2個(gè)白球,包括cd,故恰有1個(gè)白球,恰有2個(gè)白球互斥而不對(duì)立.
二、填空題
4.從一副混合后的撲克牌(52張,去掉大、小王)中隨機(jī)抽取1張,事件a為“抽得紅桃k”,事件b為“抽得為黑桃”,則概率p(a∪b)的值是 .(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)
考查目的:考查事件的并(或稱事件的和)的概率公式.
答案:.
解析:一副撲克中有1張紅桃k,13張黑桃,事件a與事件b為互斥事件,
5.第16屆亞運(yùn)會(huì)于2010年11月12日在中國(guó)廣州舉行,運(yùn)動(dòng)會(huì)期間有來(lái)自a大學(xué)2名大學(xué)生和b大學(xué)4名大學(xué)生共計(jì)6名志愿者,現(xiàn)從這6名志愿者中隨機(jī)抽取2人到體操比賽場(chǎng)館服務(wù),至少有一名a大學(xué)志愿者的概率是 .
考查目的:考查交事件(積事件)與事件的并(或稱事件的和)的概率公式.
答案:.
解析:(或).
6.甲、乙兩隊(duì)進(jìn)行足球比賽,若兩隊(duì)?wèi)?zhàn)平的概率是,乙隊(duì)勝的概率是,則甲隊(duì)勝的概率是 .
考查目的:考查互為對(duì)立事件的概念及其中一個(gè)事件發(fā)生的概率公式.
答案:.
解析:“甲獲勝”是“兩隊(duì)?wèi)?zhàn)平或乙獲勝”的對(duì)立事件,∴甲隊(duì)勝的概率是.
三、解答題
7.某醫(yī)院派出醫(yī)生下鄉(xiāng)醫(yī)療,一天內(nèi)派出醫(yī)生人數(shù)及其概率如下:
醫(yī)生人數(shù)
1
2
3
4
5人及以上
概 率
0.1
0.16
0.3
0.2
0.2
0.04
求:
⑴派出醫(yī)生至多2人的概率;
⑵派出醫(yī)生至少2人的概率.
考查目的:事件的并(或稱事件的和)的概率公式的應(yīng)用.
答案:⑴0.56;⑵0.74.
解析:記事件a為“不派出醫(yī)生”,事件b為“派出1名醫(yī)生”,事件c為“派出2名醫(yī)生”,事件d為“派出3名醫(yī)生”,事件e為“派出4名醫(yī)生”,事件f為“派出不少于5名醫(yī)生”,則事件a、b、c、d、e、f彼此互斥,且p(a)=0.1,p(b)=0.16,p(c)=0.3,p(d)=0.2,p(e)=0.2,p(f)=0.04.
⑴“派出醫(yī)生至多2人”的概率為:p(a+b+c)=p(a)+p(b)+p(c)=0.1+0.16+0.3=0.56;
⑵“派出醫(yī)生至少2人”的概率為:p(c+d+e+f)=p(c)+p(d)+p(e)+p(f)=0.3+0.2+0.2+0.04=0.74.
另解:1-p(a+b)=1-0.1-0.16=0.74.
8.袋中有12個(gè)小球,分別為紅球、黑球、黃球、綠球,從中任取一球,得到紅球的概率是,得到黑球或黃球的概率是,得到黃球或綠球的概率也是,試求得到黑球、得到黃球、得到綠球的概率各是多少?
考查目的:考查事件的并(或稱事件的和)的概率公式與方程組的簡(jiǎn)單應(yīng)用.
答案:,,.
解析:設(shè)事件a、b、c、d分別表示“任取一球,得到紅球、任取一球,得到黑球、任取一球,得到黃球、任取一球,得到綠球”,則由已知得,,
,,解得p(b)=,p(c)=,p(d)=,故得到黑球、黃球、綠球的概率分別是,,.
高考數(shù)學(xué)備考:第一輪復(fù)習(xí)總體方案
摘要小編為大家整理了第一輪復(fù)習(xí)總體方案,希望高三的同學(xué)們好好復(fù)習(xí),備戰(zhàn)高考,成功是屬于你們的。
一、全力夯實(shí)雙基,保證駕輕就熟
目前高考數(shù)學(xué)試卷,基礎(chǔ)知識(shí)和基本方法的考查占80%左右的份量,即使是創(chuàng)新題或能力題也是建立在雙基之上,只有腳踏實(shí)地、一絲不茍地鞏固雙基,才能占領(lǐng)高考陣地。
教材是,把握了教材,也就切中了要害。不僅要深刻理解教材中的知識(shí),更要關(guān)注教材中解決問(wèn)題的思想方法,還要全面把握知識(shí)體系,保證:⑴不 掌握不放過(guò)。對(duì)照《考試說(shuō)明》,確定考試范圍,認(rèn)真閱讀和理解教材中相關(guān)內(nèi)容,包括每個(gè)概念、每個(gè)例題、每個(gè)注釋、每個(gè)圖形,準(zhǔn)確理解和記憶知識(shí)點(diǎn),不留 空白和隱患。⑵胸?zé)o全書不放過(guò),在掌握知識(shí)點(diǎn)的基礎(chǔ)上,根據(jù)知識(shí)的內(nèi)在聯(lián)系,構(gòu)建知識(shí)網(wǎng)絡(luò),把書學(xué)得“由厚變薄”。不防從課本的章節(jié)目錄入手,進(jìn)行串聯(lián), 形成體系。⑶有疑難不放過(guò)。為鞏固復(fù)習(xí)效果,發(fā)展思維能力,適量的練習(xí)是必要的,練習(xí)中遇到困難也在所難免,必須找到問(wèn)題的癥結(jié)在那里,對(duì)照教材,徹底掃 除障礙?;貧w教材、吃透課本,千萬(wàn)不能眼高手低喲。
二、重視錯(cuò)題病例,實(shí)時(shí)忘羊補(bǔ)牢
錯(cuò)題病例也是財(cái)富,它有時(shí)暴露我們的知識(shí)缺陷,有時(shí)暴露我們的思維不足,有時(shí)暴露我們方法的不當(dāng),毛病暴露出來(lái)了,也就有治療的方向,提供了糾錯(cuò)的機(jī)會(huì)。
由于題海戰(zhàn)術(shù)的影響,許多同學(xué),拼命做題,期望以多取勝,但常常事與愿違,不見提高,走訪了一些同學(xué),普遍覺得困惑他們的是有些錯(cuò)誤很頑固,訂正過(guò)了,評(píng)講過(guò)了,還是重蹈覆轍。原因是沒(méi)有重視錯(cuò)誤,或沒(méi)有診斷出錯(cuò)因,沒(méi)有收到糾錯(cuò)的效果。
建議:建立錯(cuò)題集,特別是那些概念理解不深刻、知識(shí)記憶失誤、思維不夠嚴(yán)謹(jǐn)、方法使用不當(dāng)?shù)鹊湫湾e(cuò)誤收集成冊(cè),并加以評(píng)注,指出錯(cuò)誤原因,經(jīng)常 翻閱,常常提醒,警鐘長(zhǎng)鳴,以絕后患。注意收集錯(cuò)題也有個(gè)度的問(wèn)題,對(duì)于那些一時(shí)粗心的偶然失誤,或一時(shí)情緒波動(dòng)而產(chǎn)生的失誤應(yīng)另作他論。
三、加強(qiáng)毅力訓(xùn)練,做到持之以恒
毅力比熱情更重要。進(jìn)入高三,同學(xué)們都雄心勃勃。但由于各種因素的影響,有的同學(xué)能夠堅(jiān)持不懈,平步青云。有的同學(xué)松弛下來(lái),形成知識(shí)或方法上的梗阻。影響情緒和信心。阻礙前進(jìn)的步伐。訓(xùn)練毅力刻不容緩!
計(jì)劃明確,并堅(jiān)決執(zhí)行,不尋找借口,做到“今日事今日畢”,決不拖到明天做今天的事,練習(xí)也要限時(shí)完成,一個(gè)小時(shí)完成的,決不拖成一個(gè)半小時(shí)完 成,否則將影響后續(xù)的學(xué)習(xí)和生活。任何一門學(xué)科,只要三天不接觸,拿到題目時(shí),將會(huì)覺得入手不順,思維不暢,效率不高且易出錯(cuò),若5天不訓(xùn)練將會(huì)不進(jìn)而 退。所以,建議各個(gè)學(xué)科每天都要有所鞏固,根據(jù)具體情況哪怕份量輕些也行。遇到困難應(yīng)及時(shí)解決,不能積累,否則會(huì)打擊信心,喪失斗志。
總結(jié)第一輪復(fù)習(xí)總體方案就為大家整理到這里了,希望大家在高三期間好好復(fù)習(xí),為高考做準(zhǔn)備,大家加油。
瀏覽了本文的同學(xué)也瀏覽了:
高考數(shù)學(xué)備考:不等式數(shù)列口訣
摘要高三的同學(xué)們正在第一輪的復(fù)習(xí)階段,小編為同學(xué)們整理了不等式數(shù)列口訣,供大家參考,大家要好好復(fù)習(xí)哦。
數(shù)列
等差等比兩數(shù)列,通項(xiàng)公式n項(xiàng)和。兩個(gè)有限求極限,四則運(yùn)算順序換。
數(shù)列問(wèn)題多變幻,方程化歸整體算。數(shù)列求和比較難,錯(cuò)位相消巧轉(zhuǎn)換,
取長(zhǎng)補(bǔ)短高斯法,裂項(xiàng)求和公式算。歸納思想非常好,編個(gè)程序好思考:
一算二看三聯(lián)想,猜測(cè)證明不可少。還有數(shù)學(xué)歸納法,證明步驟程序化:
首先驗(yàn)證再假定,從k向著k加1,推論過(guò)程須詳盡,歸納原理來(lái)肯定。
不等式
解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無(wú)理不等式,化為有理不等式。
高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。
證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭(zhēng)高下。
直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來(lái)幫助,畫圖建模構(gòu)造法。
總結(jié)不等式數(shù)列口訣就為大家整理到這里了,希望大家在高三期間好好復(fù)習(xí),為高考做準(zhǔn)備,大家加油。
瀏覽了本文的同學(xué)也瀏覽了:
高中數(shù)學(xué)學(xué)習(xí)方法之良好的學(xué)習(xí)習(xí)慣
高中數(shù)學(xué)學(xué)習(xí)方法之良好的學(xué)習(xí)習(xí)慣
良好的學(xué)習(xí)習(xí)慣包括制定學(xué)習(xí)計(jì)劃、課前預(yù)習(xí)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。
(1)制定計(jì)劃明確學(xué)習(xí)目的。合理的學(xué)習(xí)計(jì)劃是推動(dòng)我們主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。計(jì)劃先由老師指導(dǎo)督促,再一定要由自己切實(shí)完成,既有長(zhǎng)遠(yuǎn)打算,又有短期安排,執(zhí)行過(guò)程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。
(2)課前預(yù)習(xí)是取得較好學(xué)習(xí)效果的基礎(chǔ)。課前預(yù)習(xí)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動(dòng)權(quán)。預(yù)習(xí)不能搞走過(guò)場(chǎng),要講究質(zhì)量,力爭(zhēng)在課前把教材弄懂,上課著重聽老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問(wèn)題解決在課堂上。
(3)上課是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié)?!皩W(xué)然后知不足”,上課更能專心聽重點(diǎn)難點(diǎn),把老師補(bǔ)充的內(nèi)容記錄下來(lái),而不是全抄全錄,顧此失彼。
(4)及時(shí)復(fù)習(xí)是提高效率學(xué)習(xí)的重要一環(huán)。通過(guò)反復(fù)閱讀教材,多方面查閱有關(guān)資料,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來(lái),進(jìn)行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對(duì)所學(xué)的新知識(shí)由“懂”到“會(huì)”。
(5)獨(dú)立作業(yè)是通過(guò)自己的獨(dú)立思考,靈活地分析問(wèn)題、解決問(wèn)題,進(jìn)一步加深對(duì)所學(xué)新知識(shí)的理解和對(duì)新技能的掌握過(guò)程。這一過(guò)程也是對(duì)我們意志毅力的考驗(yàn),通過(guò)運(yùn)用使我們對(duì)所學(xué)知識(shí)由“會(huì)”到“熟”。
(6)解決疑難是指對(duì)獨(dú)立完成作業(yè)過(guò)程中暴露出來(lái)對(duì)知識(shí)理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過(guò)點(diǎn)撥使思路暢通,補(bǔ)遺解答的過(guò)程。解決疑難一定要有鍥而不舍的精神。做錯(cuò)的作業(yè)再做一遍。對(duì)錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考。實(shí)在解決不了的要請(qǐng)教老師和同學(xué),并要經(jīng)常把易錯(cuò)的地方拿來(lái)復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問(wèn)同學(xué)獲得的東西消化變成自己的知識(shí),長(zhǎng)期堅(jiān)持使對(duì)所學(xué)知識(shí)由“熟”到“活”。
(7)系統(tǒng)小結(jié)是通過(guò)積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識(shí)和發(fā)展認(rèn)識(shí)能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過(guò)分析、綜合、類比、概括,揭示知識(shí)間的內(nèi)在聯(lián)系,以達(dá)到對(duì)所學(xué)知識(shí)融會(huì)貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對(duì)所學(xué)知識(shí)由“活”到“悟”。
(8)課外學(xué)習(xí)包括閱讀課外書籍與報(bào)刊,參加學(xué)科競(jìng)賽與講座,走訪高年級(jí)同學(xué)或老師交流學(xué)習(xí)心得等。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富同學(xué)們的文化科學(xué)知識(shí),加深和鞏固課內(nèi)所學(xué)的知識(shí),而且能夠滿足和發(fā)展我們的興趣愛好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作的能力,激發(fā)求知欲與學(xué)習(xí)熱情。
高中理科數(shù)學(xué)主要失分細(xì)節(jié)
對(duì)于理科學(xué)生而言,數(shù)學(xué)一般是強(qiáng)項(xiàng),但越是強(qiáng)項(xiàng)的科目也就越容易大意。那么,根據(jù)理科生的實(shí)際特點(diǎn)
,高考數(shù)學(xué)應(yīng)該怎復(fù)習(xí)呢?下面來(lái)聽一聽老師的建議吧!
無(wú)論一輪復(fù)習(xí)還是二輪復(fù)習(xí)都應(yīng)該將重點(diǎn)放在基礎(chǔ)知識(shí)、基本技能的訓(xùn)練上,尤其是計(jì)算能力的培養(yǎng)。
回想這幾年的高考情況,以下是考生容易失分的三個(gè)方面。
第二,審題不仔細(xì)。不少考生審題時(shí),只看到了部分條件,例如f(_)≤0,有的學(xué)生就會(huì)當(dāng)成f(_)<0,這
樣一來(lái),全部錯(cuò)誤。從往年的情況看,有的考生因?yàn)榇中膩G掉了10多分。
第一,步驟不完整。從這幾年看,高考答案的步驟非常詳細(xì),而有些考生雖然會(huì)做,最后的結(jié)果也對(duì),但
是缺少中間步驟,這樣很容易失分。
第三,答題時(shí)間安排不合理。數(shù)學(xué)選擇題做題時(shí)間一般是2分鐘,曾有一位女生,學(xué)習(xí)成績(jī)非常好,考試
中遇到一道不會(huì)做的題,耽誤了15分鐘,題是做出來(lái)了,可當(dāng)她看到別的同學(xué)已經(jīng)開始做解答題時(shí),慌了,結(jié)
果考得一塌糊涂。
復(fù)習(xí)中,學(xué)生要提煉高考熱點(diǎn),查漏補(bǔ)缺,針對(duì)易錯(cuò)的地方加強(qiáng)練習(xí),熟練掌握解決中低檔題目的方法
。在此,提醒考生,千萬(wàn)別排斥高頻率的模擬測(cè)試,它能幫助學(xué)生掌握答題的節(jié)奏、技巧,穩(wěn)定心理狀態(tài),提
高動(dòng)手能力。
針對(duì)這些問(wèn)題,特別提醒考生,考試中一定要規(guī)范答題,遇到不會(huì)做的題目時(shí)先放一放,此外就是一定要
南昌市高中新課程訓(xùn)練題(不等式2)
一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1.若,則下列不等式成立的是( c )
a.? b. c. d.
2.集合、,若是的充分條件,則b的取值范圍可以是 ( )
a. b. c. d.
3.不等式( )
a.(0,2) b.(2,+∞) c. d.
4.設(shè),函數(shù)則使的_的取值范圍是( )
a. b. c. d.
5.若2-m與|m|-3異號(hào),則m的取值范圍是 ( )
a. m>3 b.-3<3 高中化學(xué) c.2<3 d.-3<2 m=''>3
6.設(shè)是函數(shù)的反函數(shù),則使成立的_的取值范圍為( )
a. b. c. d.
7.不等式的解集不是空集,則實(shí)數(shù)a的取值范圍是( )
a. b. c. d.
8.設(shè)f(_)= 則不等式f(_)>2的解集為 ( )
a.(1,2)(3,+∞) b.(,+∞)
c.(1,2) ( ,+∞) d.(1,2)
9.a(chǎn),b,u都是正實(shí)數(shù),且a,b滿足,則使得a+b≥u恒成立的u的取值范圍是( )
a.(0,16) b.(0,12) c.(0,10) d.(0,8)
10.設(shè)表示不大于_的最大整數(shù),如:[]=3,[—1.2]=-2,[0.5]=0,則使( )
a. b. c. d.
11.關(guān)于_的不等式_|_-a|≥2a2(a( )
a. b. c. d.r
12.在r上定義運(yùn)算,若不等式成立,則( )
a. b. c. d.
二、填空題:本大題共4小題,每小題4分,共16分。請(qǐng)把答案填在答題卡上。
13.某公司一年購(gòu)買某種貨物400噸,每次都購(gòu)買噸,運(yùn)費(fèi)為4萬(wàn)元/次,一年的總存儲(chǔ)費(fèi)用為萬(wàn)元,要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則 _________噸.
14.若不等式 的解集為,則a+b= 。
15.對(duì)a,br,記ma_|a,b|=函數(shù)f(_)=ma_||_+1|,|_-2||(_r)的最小值是 .
16.關(guān)于,則實(shí)數(shù)k的值等于 。
三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟。
17.已知條件p:|5_-1|>a和條件,請(qǐng)選取適當(dāng)?shù)膶?shí)數(shù)a的值,分別利用所給的兩個(gè)條件作為a、b構(gòu)造命題:“若a則b”,并使得構(gòu)造的原命題為真命題,而其逆命題為假命題.則這樣的一個(gè)原命題可以是什么?并說(shuō)明為什么這一命題是符合要求的命題.
18.解關(guān)于的不等式
19.已知函數(shù)有兩個(gè)實(shí)根為
(1)求函數(shù);
(2)設(shè)
20.已知函數(shù)的圖象與_、y軸分別相交于點(diǎn)a、b、(1)求;
(2)當(dāng)
21.已知:在上是減函數(shù),解關(guān)于的不等式:
22.已知函數(shù)為奇函數(shù),,且不等式的解集是。
(1)求的值;
(2)是否存在實(shí)數(shù)使不等式對(duì)一切成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由。
參考答案
一、選擇題
c d c ad,a c c a c ,b c
二、填空題
13.20 14.-2
15. 16.
三、解答題
17.解:已知條件即,或,∴,或,
已知條件即,∴,或;
令,則即,或,此時(shí)必有成立,反之不然.
故可以選取的一個(gè)實(shí)數(shù)是,a為,b為,對(duì)應(yīng)的命題是若則,
由以上過(guò)程可知這一命題的原命題為真命題,但它的逆命題為假命題.
18.解:原不等式可化為:
①當(dāng)時(shí),原不等式的解集為
②當(dāng)時(shí),原不等式的解集為
③當(dāng)時(shí),原不等式的解集為
④當(dāng)時(shí),原不等式的解集為
⑤當(dāng)時(shí),原不等式的解集為
⑥當(dāng)時(shí),原不等式的解集為
19.解:(1)
1
2
3
20.
21. 解:由得
由
不等式的解集為
22.解:(1)是奇函數(shù)對(duì)定義域內(nèi)一切都成立b=0,從而。又,再由,得或,所以。
此時(shí),在上是增函數(shù),注意到,則必有,即,所以,綜上:;
(2)由(1),,它在上均為增函數(shù),而所以的值域?yàn)?,符合題設(shè)的實(shí)數(shù)應(yīng)滿足,即,故符合題設(shè)的實(shí)數(shù)不存在。
【第9篇 高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
導(dǎo)語(yǔ)高一新生要根據(jù)自己的條件,以及高中階段學(xué)科知識(shí)交叉多、綜合性強(qiáng),以及考查的知識(shí)和思維觸點(diǎn)廣的特點(diǎn),找尋一套行之有效的學(xué)習(xí)方法。今天為各位同學(xué)整理了《高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)》,希望對(duì)您的學(xué)習(xí)有所幫助!
1.高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
定義:
形如y=_^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則_肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則_不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)_為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在_大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在_小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則_^(p/q)=q次根號(hào)(_的p次方),如果q是奇數(shù),函數(shù)的定義域是r,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則_=1/(_^k),顯然_≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到_所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于_>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于_<0和_>0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對(duì)于_為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
2.高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個(gè)特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
3.高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
兩個(gè)平面的位置關(guān)系:
(1)兩個(gè)平面互相平行的定義:空間兩平面沒(méi)有公共點(diǎn)
(2)兩個(gè)平面的位置關(guān)系:
兩個(gè)平面平行——沒(méi)有公共點(diǎn);兩個(gè)平面相交——有一條公共直線。
a、平行
兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。
兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。
b、相交
二面角
(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個(gè)半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直
兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)
4.高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
1.“包含”關(guān)系—子集
注意:有兩種可能
(1)a是b的一部分;
(2)a與b是同一集合。
反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba
2.“相等”關(guān)系:a=b(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)a={_|_2-1=0}b={-1,1}“元素相同則兩集合相等”
即:
①任何一個(gè)集合是它本身的子集。a(a
②真子集:如果a(b,且a(b那就說(shuō)集合a是集合b的真子集,記作ab(或ba)
③如果a(b,b(c,那么a(c
④如果a(b同時(shí)b(a那么a=b
3.不含任何元素的集合叫做空集,記為φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
5.高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
集合的運(yùn)算
1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.
記作ab(讀作a交b),即ab={_|_a,且_b}.
2、并集的定義:一般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:ab(讀作a并b),即ab={_|_a,或_b}.
3、交集與并集的性質(zhì):aa=a,a=,ab=ba,aa=a,
a=a,ab=ba.
4、全集與補(bǔ)集
(1)補(bǔ)集:設(shè)s是一個(gè)集合,a是s的一個(gè)子集(即),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)
(2)全集:如果集合s含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用u來(lái)表示.
(3)性質(zhì):
⑴cu(cua)=a
⑵(cua)
⑶(cua)a=u
【第10篇 高三數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
高三數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)
1. 對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無(wú)序性”。
中元素各表示什么?
注重借助于數(shù)軸和文氏圖解集合問(wèn)題。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性質(zhì):
(3)德摩根定律:
4. 你會(huì)用補(bǔ)集思想解決問(wèn)題嗎?(排除法、間接法)
的取值范圍。
6. 命題的四種形式及其相互關(guān)系是什么?
(互為逆否關(guān)系的命題是等價(jià)命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7. 對(duì)映射的概念了解嗎?映射f:a→b,是否注意到a中元素的任意性和b中與之對(duì)應(yīng)元素的性,哪幾種對(duì)應(yīng)能構(gòu)成映射?
(一對(duì)一,多對(duì)一,允許b中有元素?zé)o原象。)
8. 函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?
(定義域、對(duì)應(yīng)法則、值域)
9. 求函數(shù)的定義域有哪些常見類型?
10. 如何求復(fù)合函數(shù)的定義域?
義域是_____________。
11. 求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎?
12. 反函數(shù)存在的條件是什么?
(一一對(duì)應(yīng)函數(shù))
求反函數(shù)的步驟掌握了嗎?
(①反解_;②互換_、y;③注明定義域)
13. 反函數(shù)的性質(zhì)有哪些?
①互為反函數(shù)的圖象關(guān)于直線y=_對(duì)稱;
②保存了原來(lái)函數(shù)的單調(diào)性、奇函數(shù)性;
14. 如何用定義證明函數(shù)的單調(diào)性?
(取值、作差、判正負(fù))
如何判斷復(fù)合函數(shù)的單調(diào)性?
∴……)
15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?
值是( )
a. 0b. 1c. 2d. 3
∴a的值為3)
16. 函數(shù)f(_)具有奇偶性的必要(非充分)條件是什么?
(f(_)定義域關(guān)于原點(diǎn)對(duì)稱)
注意如下結(jié)論:
(1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。
17. 你熟悉周期函數(shù)的定義嗎?
函數(shù),t是一個(gè)周期。)